APPENDIX G

Section 4

Outfall 009 – March 17, 18, & 19, 2012 Test America Analytical Laboratory Report

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Irvine 17461 Derian Ave Suite 100

Irvine, CA 92614-5817 Tel: (949)261-1022

TestAmerica Job ID: 440-5816-1

Client Project/Site: Boeing SSFL NPDES

For:

MWH Americas Inc 618 Michillinda Avenue, Suite 200 Arcadia, California 91007

Attn: Bronwyn Kelly

Delby Wilson

Authorized for release by: 4/24/2012 3:47:57 PM

Debby Wilson
Project Manager I
debby.wilson@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

I certify under penalty of perjury that the information contained in this report and all attachments was produced in accordance with the indicated methods and laboratory standard operating procedures, except as noted, and are complete and accurate to the best of my knowledge and belief. Subcontract laboratory reports that are attached have been evaluated for completeness and quality control acceptability.

Delby Wilson

6

Debby Wilson Project Manager I 4/24/2012 3:47:57 PM

9

10

11

12

Client: MWH Americas Inc TestAmerica Job ID: 440-5816-1 Project/Site: Boeing SSFL NPDES

Table of Contents

Cover Page	1
Table of Contents	3
Sample Summary	4
Case Narrative	5
Client Sample Results	7
Chronicle	16
QC Sample Results	19
QC Association	48
Definitions	55
Certification Summary	56
Subcontract Data	57
Chain of Custody	110
Receipt Checklists	112

6

8

9

10

12

Sample Summary

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES

TestAmerica Job ID: 440-5816-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
440-5816-3	Outfall 009	Water	03/17/12 12:35	03/17/12 14:40
440-5816-4	Trip Blanks	Water	03/17/12 12:35	03/17/12 14:40
440-5832-1	Outfall 009 (Composite)	Water	03/18/12 08:12	03/18/12 14:40
440-5832-3	Trin Blank	Water	03/19/12 18:03	03/18/12 14:40

G

7

0

10

11

12

Case Narrative

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES

TestAmerica Job ID: 440-5816-1

Job ID: 440-5816-1

Laboratory: TestAmerica Irvine

Narrative

Job Narrative 440-5816-1

Comments

No additional comments.

All samples were received in good condition within temperature requirements.

GC/MS VOA

Method(s) 624: The preservative used in the sample containers provided is not compatible with the analytes requested. The following sample(s) was received preserved with hydrochloric acid: Trip Blanks (440-5816-4). The requested target analyte list contains 2-chloroethylvinyl ether, acrolein, and/or acrylonitrile, which are acid-labile compounds that degrade in an acidic medium. 5816-4. pH=4

No other analytical or quality issues were noted.

GC/MS Semi VOA

Method(s) 525.2: There was no MS/MSD analyzed for this batch. Please see the LCS/LCSD

Method(s) 625: The continuing calibration verification (CCV) for several compounds associated with batch 15425 recovered above the upper control limit. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

Method(s) 625: Insufficient sample volume was available to perform batch matrix spike/matrix spike duplicate (MS/MSD) associated with batch 15425. The laboratory control sample (LCS) was performed in duplicate to provide precision data for this batch.

No other analytical or quality issues were noted.

HPLC

Method(s) 300.0: The continuing calibration verification (CCV) for analytical batch 14023 exceeded control criteria for nitrate. The data have been qualified and reported.

No other analytical or quality issues were noted.

GC Semi VOA

Method(s) 608: Insufficient sample volume was available to perform batch matrix spike/matrix spike duplicate (MS/MSD) associated with batch 14346. The laboratory control sample (LCS) was performed in duplicate to provide precision data for this batch.

Method(s) 608: The continuing calibration verification (CCV) associated with batch 14342 recovered outside acceptance criteria, low biased, for DDT and Methoxychlor, high biased for DDD. A reporting limit (RL) standard was analyzed, and the target analyte was detected. Since the associated samples were non-detect for this analyte, the data have been reported.

Method(s) 608: Insufficient sample volume was available to perform batch matrix spike/matrix spike duplicate (MS/MSD) associated with batch 14342. The laboratory control sample (LCS) was performed in duplicate to provide precision data for this batch.

No other analytical or quality issues were noted.

Metals

No analytical or quality issues were noted.

General Chemistry

Method(s) 1664A: Insufficient sample volume was available to perform batch matrix spike/matrix spike duplicate (MS/MSD) associated with batch 16301. The laboratory control sample (LCS) was performed in duplicate to provide precision data for this batch.

No other analytical or quality issues were noted.

Case Narrative

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES

TestAmerica Job ID: 440-5816-1

Job ID: 440-5816-1 (Continued)

Laboratory: TestAmerica Irvine (Continued)

Biology

No analytical or quality issues were noted.

WATER, 1613B, Dioxins/Furans with Totals

Sample: 1

Some analytes in this sample and the associated method blank (MB) have an ion abundance ratio that is outside of criteria. The analytes are considered as an "estimated maximum possible concentration" (EMPC) because the quantitation is based on the theoretical ion abundance ratio. Analytical results are reported with a "Q" flag.

Some analytes in the MB are reported at a concentration below the estimated detection limit (EDL). The data is reported as a positive detection because the peaks elute at the correct retention time for both characteristic ions and have a signal to noise ratio greater than the method required 2.5:1.

Organic Prep

No analytical or quality issues were noted.

4

5

9

10

11

Project/Site: Boeing SSFL NPDES

Client: MWH Americas Inc

Date Received: 03/17/12 14:40

Tert-amyl methyl ether

Ethyl tert-butyl ether

Xylenes, Total

Lab Sample ID: 440-5816-3

Matrix: Water

Client Sample ID: Outfall 009 Date Collected: 03/17/12 12:35

Method: 624 - Volatile Organic Compounds (GC/MS)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND ND	0.50	0.30	ug/L			03/27/12 10:00	1
2-Chloroethyl vinyl ether	ND	2.0	1.8	ug/L			03/20/12 14:24	1
1,1,2,2-Tetrachloroethane	ND	0.50	0.30	ug/L			03/27/12 10:00	1
Acrolein	ND	5.0	4.0	ug/L			03/20/12 14:24	1
1,1,2-Trichloroethane	ND	0.50	0.30	ug/L			03/27/12 10:00	1
Acrylonitrile	ND	2.0	1.2	ug/L			03/20/12 14:24	1
1,1-Dichloroethane	ND	0.50	0.40	ug/L			03/27/12 10:00	1
1,1-Dichloroethene	ND	0.50	0.42	ug/L			03/27/12 10:00	1
1,2-Dichlorobenzene	ND	0.50	0.32	ug/L			03/27/12 10:00	1
1,2-Dichloroethane	ND	0.50	0.28	ug/L			03/27/12 10:00	1
1,2-Dichloropropane	ND	0.50	0.35	ug/L			03/27/12 10:00	1
1,3-Dichlorobenzene	ND	0.50	0.35	ug/L			03/27/12 10:00	1
1,2,3-Trichloropropane	ND	0.50	0.40	ug/L			03/27/12 10:00	1
1,4-Dichlorobenzene	ND	0.50	0.37	ug/L			03/27/12 10:00	1
Benzene	ND	0.50	0.28	ug/L			03/27/12 10:00	1
Bromoform	ND	0.50	0.40	ug/L			03/27/12 10:00	1
Bromomethane	ND	0.50	0.42	ug/L			03/27/12 10:00	1
Carbon tetrachloride	ND	0.50	0.28	ug/L			03/27/12 10:00	1
Chlorobenzene	ND	0.50	0.36	ug/L			03/27/12 10:00	1
Dibromochloromethane	ND	0.50	0.40	ug/L			03/27/12 10:00	1
Chloroethane	ND	0.50	0.40	ug/L			03/27/12 10:00	1
Chloroform	ND	0.50	0.33	ug/L			03/27/12 10:00	1
Chloromethane	ND	0.50	0.40	ug/L			03/27/12 10:00	1
cis-1,3-Dichloropropene	ND	0.50		ug/L			03/27/12 10:00	1
Bromodichloromethane	ND	0.50	0.30	ug/L			03/27/12 10:00	1
Ethylbenzene	ND	0.50		ug/L			03/27/12 10:00	1
Methylene Chloride	ND	1.0	0.95	ug/L			03/27/12 10:00	1
Tetrachloroethene	ND	0.50	0.32	ug/L			03/27/12 10:00	1
Toluene	ND	0.50		ug/L			03/27/12 10:00	1
trans-1,2-Dichloroethene	ND	0.50	0.30	ug/L			03/27/12 10:00	1
tert-Butanol	ND	10	6.5	ug/L			03/27/12 10:00	1
trans-1,3-Dichloropropene	ND	0.50		ug/L			03/27/12 10:00	1
Trichlorofluoromethane	ND	0.50	0.34	ug/L			03/27/12 10:00	1
Vinyl chloride	ND	0.50	0.40	ug/L			03/27/12 10:00	1
Trichloroethene	ND	0.50		ug/L			03/27/12 10:00	1
cis-1,2-Dichloroethene	ND	0.50		ug/L			03/27/12 10:00	1
1,2-Dibromoethane (EDB)	ND	0.50		ug/L			03/27/12 10:00	1
Diisopropyl ether	ND	0.50		ug/L			03/27/12 10:00	1
Methyl tert-butyl ether	ND	0.50		ug/L			03/27/12 10:00	1
Naphthalene	ND	0.50		ug/L			03/27/12 10:00	1
T	NB	2.00		g			00/27/12 10:00	

Surrogate	%Recovery	Qualifier	Limits	Prepared Ar	nalyzed	Dil Fac
Toluene-d8 (Surr)	100		80 - 120	03/20	0/12 14:24	1
Dibromofluoromethane (Surr)	105		80 - 120	03/20	0/12 14:24	1
4-Bromofluorobenzene (Surr)	112		80 - 120	03/27	7/12 10:00	1
Dibromofluoromethane (Surr)	110		80 - 120	03/27	7/12 10:00	1
Toluene-d8 (Surr)	100		80 - 120	03/27	7/12 10:00	1

0.50

0.50

1.0

0.33 ug/L

0.28 ug/L

0.90 ug/L

ND

ND

ND

03/27/12 10:00

03/27/12 10:00

03/27/12 10:00

Client Sample Results

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES

TestAmerica Job ID: 440-5816-1

Lab Sample ID: 440-5816-3

Lab Sample ID: 440-5816-4

Matrix: Water

Matrix: Water

Client Sample ID: Outfall 009

Date Collected: 03/17/12 12:35 Date Received: 03/17/12 14:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	ND		1.0	0.25	ug/L			03/17/12 23:48	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HEM	ND		4.7	1.3	mg/L		03/29/12 06:37	03/29/12 10:37	•
- Method: SM 9221E - Colifori	ms, Fecal (Multiple-	Tube Fermen	itation)						
Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
					MPN/100mL			03/17/12 15:31	

 Method: SM 9221F - E.Coli (Multiple-Tube Fermentation; EC-MUG)

 Analyte
 Result
 Qualifier
 RL
 RL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Escherichia coli
 1600
 2.0
 2.0
 MPN/100mL
 03/17/12 15:31
 1

Client Sample ID: Trip Blanks

Date Collected: 03/17/12 12:35

Date Received: 03/17/12 14:40

Method: 624 - Volatile Organic Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND ND	0.50	0.30	ug/L			03/27/12 10:28	
2-Chloroethyl vinyl ether	ND	2.0	1.8	ug/L			03/20/12 10:40	1
1,1,2,2-Tetrachloroethane	ND	0.50	0.30	ug/L			03/27/12 10:28	
Acrolein	ND	5.0	4.0	ug/L			03/20/12 10:40	1
1,1,2-Trichloroethane	ND	0.50	0.30	ug/L			03/27/12 10:28	1
Acrylonitrile	ND	2.0	1.2	ug/L			03/20/12 10:40	1
1,1-Dichloroethane	ND	0.50	0.40	ug/L			03/27/12 10:28	1
1,1-Dichloroethene	ND	0.50	0.42	ug/L			03/27/12 10:28	1
1,2-Dichlorobenzene	ND	0.50	0.32	ug/L			03/27/12 10:28	1
1,2-Dichloroethane	ND	0.50	0.28	ug/L			03/27/12 10:28	1
1,2-Dichloropropane	ND	0.50	0.35	ug/L			03/27/12 10:28	1
1,3-Dichlorobenzene	ND	0.50	0.35	ug/L			03/27/12 10:28	1
1,2,3-Trichloropropane	ND	0.50	0.40	ug/L			03/27/12 10:28	1
1,4-Dichlorobenzene	ND	0.50	0.37	ug/L			03/27/12 10:28	1
Benzene	ND	0.50	0.28	ug/L			03/27/12 10:28	1
Bromoform	ND	0.50	0.40	ug/L			03/27/12 10:28	1
Bromomethane	ND	0.50	0.42	ug/L			03/27/12 10:28	1
Carbon tetrachloride	ND	0.50	0.28	ug/L			03/27/12 10:28	1
Chlorobenzene	ND	0.50	0.36	ug/L			03/27/12 10:28	
Dibromochloromethane	ND	0.50	0.40	ug/L			03/27/12 10:28	1
Chloroethane	ND	0.50	0.40	ug/L			03/27/12 10:28	1
Chloroform	ND	0.50	0.33	ug/L			03/27/12 10:28	1
Chloromethane	ND	0.50	0.40	ug/L			03/27/12 10:28	1
cis-1,3-Dichloropropene	ND	0.50	0.22	ug/L			03/27/12 10:28	1
Bromodichloromethane	ND	0.50	0.30	ug/L			03/27/12 10:28	1
Ethylbenzene	ND	0.50	0.25	ug/L			03/27/12 10:28	1
Methylene Chloride	ND	1.0	0.95	ug/L			03/27/12 10:28	1
Tetrachloroethene	ND	0.50	0.32	ug/L			03/27/12 10:28	1
Toluene	ND	0.50	0.36	ug/L			03/27/12 10:28	1
trans-1,2-Dichloroethene	ND	0.50	0.30	ug/L			03/27/12 10:28	
tert-Butanol	ND	10	6.5	ug/L			03/27/12 10:28	1
trans-1,3-Dichloropropene	ND	0.50		ug/L			03/27/12 10:28	1

TestAmerica Irvine 4/24/2012

Page 8 of 113

2

3

5

7

8

9

11

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES

Date Received: 03/17/12 14:40

TestAmerica Job ID: 440-5816-1

Client Sample ID: Trip Blanks

Lab Sample ID: 440-5816-4 Date Collected: 03/17/12 12:35

Matrix: Water

Method: 624 - Volatile Organic Compounds (GC/MS) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichlorofluoromethane	ND		0.50	0.34	ug/L			03/27/12 10:28	1
Vinyl chloride	ND		0.50	0.40	ug/L			03/27/12 10:28	1
Trichloroethene	ND		0.50	0.26	ug/L			03/27/12 10:28	1
cis-1,2-Dichloroethene	ND		0.50	0.32	ug/L			03/27/12 10:28	1
1,2-Dibromoethane (EDB)	ND		0.50	0.40	ug/L			03/27/12 10:28	1
Diisopropyl ether	ND		0.50	0.25	ug/L			03/27/12 10:28	1
Methyl tert-butyl ether	ND		0.50	0.32	ug/L			03/27/12 10:28	1
Naphthalene	ND		0.50	0.41	ug/L			03/27/12 10:28	1
Tert-amyl methyl ether	ND		0.50	0.33	ug/L			03/27/12 10:28	1
Ethyl tert-butyl ether	ND		0.50	0.28	ug/L			03/27/12 10:28	1
Xylenes, Total	ND		1.0	0.90	ug/L			03/27/12 10:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98		80 - 120			-		03/20/12 10:40	1

80 - 120

80 - 120

80 - 120

80 - 120

Client Sample ID: Outfall 009 (Composite)

Date Collected: 03/18/12 08:12

Date Received: 03/18/12 14:40

Dibromofluoromethane (Surr) 4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Lab Sample ID: 440-5832-1

03/20/12 10:40

03/27/12 10:28

03/27/12 10:28

03/27/12 10:28

Matrix: Water

97

112

114

Method: 525.2 - Semivolatile C	rganic Compoun	ids (GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlorpyrifos	ND		0.96	0.077	ug/L		03/19/12 17:01	03/20/12 18:25	1
Diazinon	ND		0.24	0.038	ug/L		03/19/12 17:01	03/20/12 18:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,3-Dimethyl-2-nitrobenzene	107		70 - 130				03/19/12 17:01	03/20/12 18:25	1
Perylene-d12	112		70 - 130				03/19/12 17:01	03/20/12 18:25	1
Triphenylphosphate	97		70 - 130				03/19/12 17:01	03/20/12 18:25	

Method: 625 - Semivolatile Organic Compounds (GC/MS	Method: 625	 Semivolatile Or 	ganic Compound	s (GC/MS)
---	-------------	-------------------------------------	----------------	-----------

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	ND		9.80	2.45	ug/L		03/21/12 17:48	03/25/12 20:28	1
1,2-Dichlorobenzene	ND		9.80	2.94	ug/L		03/21/12 17:48	03/25/12 20:28	1
1,2-Diphenylhydrazine(as	ND		19.6	2.45	ug/L		03/21/12 17:48	03/25/12 20:28	1
Azobenzene)									
1,3-Dichlorobenzene	ND		9.80	2.94	ug/L		03/21/12 17:48	03/25/12 20:28	1
1,4-Dichlorobenzene	ND		9.80	2.45	ug/L		03/21/12 17:48	03/25/12 20:28	1
2,4,6-Trichlorophenol	ND		19.6	4.41	ug/L		03/21/12 17:48	03/25/12 20:28	1
2,4-Dichlorophenol	ND		9.80	3.43	ug/L		03/21/12 17:48	03/25/12 20:28	1
2,4-Dimethylphenol	ND		19.6	3.43	ug/L		03/21/12 17:48	03/25/12 20:28	1
2,4-Dinitrophenol	ND		19.6	7.84	ug/L		03/21/12 17:48	03/25/12 20:28	1
2,4-Dinitrotoluene	ND		9.80	3.43	ug/L		03/21/12 17:48	03/25/12 20:28	1
2,6-Dinitrotoluene	ND		9.80	1.96	ug/L		03/21/12 17:48	03/25/12 20:28	1
2-Chloronaphthalene	ND		9.80	2.94	ug/L		03/21/12 17:48	03/25/12 20:28	1
2-Chlorophenol	ND		9.80	2.94	ug/L		03/21/12 17:48	03/25/12 20:28	1
2-Methylnaphthalene	ND		9.80	1.96	ug/L		03/21/12 17:48	03/25/12 20:28	1
2-Methylphenol	ND		9.80	2.94	ug/L		03/21/12 17:48	03/25/12 20:28	1
2-Nitroaniline	ND		19.6	1.96	ug/L		03/21/12 17:48	03/25/12 20:28	1

Client Sample Results

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES

TestAmerica Job ID: 440-5816-1

Matrix: Water

Client Sample ID: Outfall 009 (Composite)

Date Collected: 03/18/12 08:12 Date Received: 03/18/12 14:40

Lab	Sample	ID:	44	10-5	832-1	

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
2-Nitrophenol	ND ND	9.80	3.43	ug/L		03/21/12 17:48	03/25/12 20:28	
3,3'-Dichlorobenzidine	ND	19.6	7.35	ug/L		03/21/12 17:48	03/25/12 20:28	
3-Nitroaniline	ND	19.6	2.94	ug/L		03/21/12 17:48	03/25/12 20:28	
4,6-Dinitro-2-methylphenol	ND	19.6	3.92	ug/L		03/21/12 17:48	03/25/12 20:28	
4-Bromophenyl phenyl ether	ND	9.80	2.94	ug/L		03/21/12 17:48	03/25/12 20:28	
4-Chloro-3-methylphenol	ND	19.6	2.45	ug/L		03/21/12 17:48	03/25/12 20:28	
4-Chloroaniline	ND	9.80	1.96	ug/L		03/21/12 17:48	03/25/12 20:28	
4-Chlorophenyl phenyl ether	ND	9.80	2.45	ug/L		03/21/12 17:48	03/25/12 20:28	
4-Methylphenol	ND	9.80	2.94	ug/L		03/21/12 17:48	03/25/12 20:28	
4-Nitroaniline	ND	19.6	3.92	ug/L		03/21/12 17:48	03/25/12 20:28	
4-Nitrophenol	ND	19.6	5.39	ug/L		03/21/12 17:48	03/25/12 20:28	
Acenaphthene	ND	9.80		ug/L		03/21/12 17:48	03/25/12 20:28	
Acenaphthylene	ND	9.80		ug/L		03/21/12 17:48	03/25/12 20:28	
Aniline	ND	9.80		ug/L		03/21/12 17:48	03/25/12 20:28	
Anthracene	ND	9.80		ug/L		03/21/12 17:48	03/25/12 20:28	
Benzidine	ND	19.6		ug/L		03/21/12 17:48	03/25/12 20:28	
Benzo[a]anthracene	ND	9.80		ug/L		03/21/12 17:48	03/25/12 20:28	
Benzo[a]pyrene	ND	9.80	2.94			03/21/12 17:48	03/25/12 20:28	
Benzo[b]fluoranthene	ND	9.80	1.96			03/21/12 17:48	03/25/12 20:28	
Benzo[g,h,i]perylene	ND	9.80		ug/L		03/21/12 17:48	03/25/12 20:28	
Benzo[k]fluoranthene	ND	9.80		ug/L		03/21/12 17:48	03/25/12 20:28	
Benzoic acid	ND	19.6	9.80	ug/L		03/21/12 17:48	03/25/12 20:28	
				•				
Benzyl alcohol	ND	19.6 9.80		ug/L		03/21/12 17:48	03/25/12 20:28	
Bis(2-chloroethoxy)methane	ND ND		2.94			03/21/12 17:48	03/25/12 20:28	
Bis(2-chloroethyl)ether	ND	9.80		•		03/21/12 17:48	03/25/12 20:28	
bis (2-chloroisopropyl) ether	ND	9.80		ug/L		03/21/12 17:48	03/25/12 20:28	
Bis(2-ethylhexyl) phthalate	ND	49.0		ug/L		03/21/12 17:48	03/25/12 20:28	
Butyl benzyl phthalate	ND	19.6		ug/L		03/21/12 17:48	03/25/12 20:28	
Chrysene	ND	9.80		ug/L		03/21/12 17:48	03/25/12 20:28	
Di-n-butyl phthalate	ND	19.6		ug/L		03/21/12 17:48	03/25/12 20:28	
Di-n-octyl phthalate	ND	19.6		ug/L		03/21/12 17:48	03/25/12 20:28	
Dibenz(a,h)anthracene	ND	19.6		ug/L		03/21/12 17:48	03/25/12 20:28	
Dibenzofuran	ND	9.80		ug/L		03/21/12 17:48	03/25/12 20:28	
Diethyl phthalate	ND	9.80		ug/L		03/21/12 17:48	03/25/12 20:28	
Dimethyl phthalate	ND	9.80	2.45			03/21/12 17:48	03/25/12 20:28	
Fluoranthene	ND	9.80	2.94			03/21/12 17:48	03/25/12 20:28	
Fluorene	ND	9.80	2.94	ug/L		03/21/12 17:48	03/25/12 20:28	
Hexachlorobenzene	ND	9.80	2.94	ug/L		03/21/12 17:48	03/25/12 20:28	
Hexachlorobutadiene	ND	9.80	3.92	ug/L		03/21/12 17:48	03/25/12 20:28	
Hexachlorocyclopentadiene	ND	19.6	4.90	ug/L		03/21/12 17:48	03/25/12 20:28	
Hexachloroethane	ND	9.80	3.43	ug/L		03/21/12 17:48	03/25/12 20:28	
Indeno[1,2,3-cd]pyrene	ND	19.6	3.43	ug/L		03/21/12 17:48	03/25/12 20:28	
sophorone	ND	9.80	2.94	ug/L		03/21/12 17:48	03/25/12 20:28	
N-Nitrosodimethylamine	ND	19.6	2.45	ug/L		03/21/12 17:48	03/25/12 20:28	
N-Nitrosodi-n-propylamine	ND	9.80	3.43	ug/L		03/21/12 17:48	03/25/12 20:28	
N-Nitrosodiphenylamine	ND	9.80	1.96	ug/L		03/21/12 17:48	03/25/12 20:28	
Naphthalene	ND	9.80		ug/L		03/21/12 17:48	03/25/12 20:28	
Nitrobenzene	ND	19.6		ug/L		03/21/12 17:48	03/25/12 20:28	
Pentachlorophenol	ND	19.6		ug/L		03/21/12 17:48	03/25/12 20:28	
Phenanthrene	ND	9.80		ug/L		03/21/12 17:48	03/25/12 20:28	
Phenol	ND	9.80		ug/L		03/21/12 17:48	03/25/12 20:28	

ე

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES

TestAmerica Job ID: 440-5816-1

Client Sample ID: Outfall 009 (Composite)

Date Collected: 03/18/12 08:12 Date Received: 03/18/12 14:40 Lab Sample ID: 440-5832-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pyrene	ND		9.80	3.92	ug/L		03/21/12 17:48	03/25/12 20:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	86		50 - 120				03/21/12 17:48	03/25/12 20:28	1
2-Fluorophenol	82		30 - 120				03/21/12 17:48	03/25/12 20:28	1
2,4,6-Tribromophenol	102		40 - 120				03/21/12 17:48	03/25/12 20:28	1
Nitrobenzene-d5	93		45 - 120				03/21/12 17:48	03/25/12 20:28	1
Terphenyl-d14	84		50 - 125				03/21/12 17:48	03/25/12 20:28	1
Phenol-d6	92		35 - 120				03/21/12 17:48	03/25/12 20:28	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND		0.0049	0.0015	ug/L		03/19/12 13:37	03/20/12 18:32	1
alpha-BHC	ND		0.0049	0.0025	ug/L		03/19/12 13:37	03/20/12 18:32	1
beta-BHC	ND		0.0098	0.0039	ug/L		03/19/12 13:37	03/20/12 18:32	1
Chlordane (technical)	ND		0.098	0.0078	ug/L		03/19/12 13:37	03/20/12 18:32	1
delta-BHC	ND		0.0049	0.0034	ug/L		03/19/12 13:37	03/20/12 18:32	1
Dieldrin	ND		0.0049	0.0020	ug/L		03/19/12 13:37	03/20/12 18:32	1
Endosulfan I	ND		0.0049	0.0029	ug/L		03/19/12 13:37	03/20/12 18:32	1
Endosulfan II	ND		0.0049	0.0020	ug/L		03/19/12 13:37	03/20/12 18:32	1
Endosulfan sulfate	ND		0.0098	0.0029	ug/L		03/19/12 13:37	03/20/12 18:32	1
Endrin	ND		0.0049	0.0020	ug/L		03/19/12 13:37	03/20/12 18:32	1
Endrin aldehyde	ND		0.0098	0.0020	ug/L		03/19/12 13:37	03/20/12 18:32	1
gamma-BHC (Lindane)	ND		0.0098	0.0029	ug/L		03/19/12 13:37	03/20/12 18:32	1
Heptachlor	ND		0.0098	0.0029	ug/L		03/19/12 13:37	03/20/12 18:32	1
Heptachlor epoxide	ND		0.0049	0.0025	ug/L		03/19/12 13:37	03/20/12 18:32	1
Toxaphene	ND		0.49	0.25	ug/L		03/19/12 13:37	03/20/12 18:32	1
4,4'-DDD	ND		0.0049	0.0039	ug/L		03/19/12 13:37	03/20/12 18:32	1
4,4'-DDE	ND		0.0049	0.0029	ug/L		03/19/12 13:37	03/20/12 18:32	1
4,4'-DDT	ND		0.0098	0.0039	ug/L		03/19/12 13:37	03/20/12 18:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	54		35 - 115				03/19/12 13:37	03/20/12 18:32	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor 1016	ND		0.49	0.25	ug/L		03/19/12 13:37	03/20/12 17:42	1
Aroclor 1221	ND		0.49	0.25	ug/L		03/19/12 13:37	03/20/12 17:42	1
Aroclor 1232	ND		0.49	0.25	ug/L		03/19/12 13:37	03/20/12 17:42	1
Aroclor 1242	ND		0.49	0.25	ug/L		03/19/12 13:37	03/20/12 17:42	1
Aroclor 1248	ND		0.49	0.25	ug/L		03/19/12 13:37	03/20/12 17:42	1
Aroclor 1254	ND		0.49	0.25	ug/L		03/19/12 13:37	03/20/12 17:42	1
Aroclor 1260	ND		0.49	0.25	ug/L		03/19/12 13:37	03/20/12 17:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl (Surr)	82		45 - 120				03/19/12 13:37	03/20/12 17:42	1

Method: 300.0 - Anions, Ion Ch	romatography								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2.0		0.50	0.40	mg/L			03/20/12 12:55	1
Nitrate Nitrite as N	0.37		0.26	0.19	mg/L			03/19/12 12:33	1
Sulfate	7.1		0.50	0.40	mg/L			03/20/12 12:55	1

Client Sample Results

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES

Client Sample ID: Outfall 009 (Composite)

TestAmerica Job ID: 440-5816-1

Lab	Sample	: וטו	44	U-:	0832	4-1

Date Collected: 03/18/12 08:12
Date Received: 03/18/12 14:40

Method: 314.0 - Perchlorate (IC)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perchlorate	ND		4.0	0.95	ug/L			03/19/12 10:49	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perchlorate	ND		4.0	0.95	ug/L			03/19/12 10:49	1
	00"10110	(40400)							
Method: 1613B - Dioxins/Furans, HR									
Analyte		Qualifier	ML		Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		0.000010	0.0000062			03/26/12 09:00	03/29/12 05:07	0.99
Total TCDD	ND		0.000010	0.0000062	ug/L		03/26/12 09:00	03/29/12 05:07	0.99
1,2,3,7,8-PeCDD	ND		0.000050	0.0000081	ug/L		03/26/12 09:00	03/29/12 05:07	0.99
Total PeCDD	ND		0.000050	0.0000081	ug/L		03/26/12 09:00	03/29/12 05:07	0.99
1,2,3,4,7,8-HxCDD	0.0000069	JQ	0.000050	0.0000052	ug/L		03/26/12 09:00	03/29/12 05:07	0.99
1,2,3,6,7,8-HxCDD	0.000015	J	0.000050	0.0000050	ug/L		03/26/12 09:00	03/29/12 05:07	0.99
1,2,3,7,8,9-HxCDD	0.000017	J	0.000050	0.0000046	ug/L		03/26/12 09:00	03/29/12 05:07	0.99
Total HxCDD	0.000083	JQ	0.000050	0.0000046	ug/L		03/26/12 09:00	03/29/12 05:07	0.99
1,2,3,4,6,7,8-HpCDD	0.00030	В	0.000050	0.0000091	ug/L		03/26/12 09:00	03/29/12 05:07	0.99
Total HpCDD	0.00069	В	0.000050	0.0000091	ug/L		03/26/12 09:00	03/29/12 05:07	0.99
OCDD	0.0035	В	0.00010	0.000017	ug/L		03/26/12 09:00	03/29/12 05:07	0.99
2,3,7,8-TCDF	ND		0.000010	0.0000027	ug/L		03/26/12 09:00	03/29/12 05:07	0.99
Total TCDF	ND		0.000010	0.0000027	ug/L		03/26/12 09:00	03/29/12 05:07	0.99
1,2,3,7,8-PeCDF	ND		0.000050	0.0000099	ug/L		03/26/12 09:00	03/29/12 05:07	0.99
2,3,4,7,8-PeCDF	ND		0.000050	0.000010	ug/L		03/26/12 09:00	03/29/12 05:07	0.99
Total PeCDF	ND		0.000050	0.0000099			03/26/12 09:00	03/29/12 05:07	0.99
1,2,3,4,7,8-HxCDF	0.0000069	JB	0.000050	0.0000043	•		03/26/12 09:00	03/29/12 05:07	0.99
1,2,3,6,7,8-HxCDF	ND	0.5	0.000050	0.0000043	-		03/26/12 09:00	03/29/12 05:07	0.99
2,3,4,6,7,8-HxCDF	0.0000046		0.000050	0.0000041			03/26/12 09:00	03/29/12 05:07	0.99
1,2,3,7,8,9-HxCDF	ND	J Q	0.000050	0.0000055	-		03/26/12 09:00	03/29/12 05:07	0.99
Total HxCDF	0.000063	LOB	0.000050	0.0000033	-		03/26/12 09:00	03/29/12 05:07	0.99
	0.000074		0.000050	0.0000041			03/26/12 09:00	03/29/12 05:07	0.99
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	0.000074 ND	В	0.000050	0.0000003	•		03/26/12 09:00	03/29/12 05:07	0.99
		В	0.000050	0.0000095	•		03/26/12 09:00	03/29/12 05:07	0.99
Total HpCDF	0.00016								
OCDF	0.00021	В	0.00010	0.000011	ug/L		03/26/12 09:00	03/29/12 05:07	0.99
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
37CI4-2,3,7,8-TCDD	97		35 _ 197				03/26/12 09:00	03/29/12 05:07	0.99
Internal Standard	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	41		25 - 164				03/26/12 09:00	03/29/12 05:07	0.99
13C-1,2,3,7,8-PeCDD	35		25 - 181				03/26/12 09:00	03/29/12 05:07	0.99
13C-1,2,3,4,7,8-HxCDD	37		32 - 141				03/26/12 09:00	03/29/12 05:07	0.99
13C-1,2,3,6,7,8-HxCDD	40		28 - 130				03/26/12 09:00	03/29/12 05:07	0.99
13C-1,2,3,4,6,7,8-HpCDD	40		23 - 140				03/26/12 09:00	03/29/12 05:07	0.99
13C-OCDD	39		17 - 157				03/26/12 09:00	03/29/12 05:07	0.99
13C-2,3,7,8-TCDF	46		24 - 169				03/26/12 09:00	03/29/12 05:07	0.99
13C-1,2,3,7,8-PeCDF	38		24 - 185				03/26/12 09:00	03/29/12 05:07	0.99
13C-2,3,4,7,8-PeCDF	39		21 - 178				03/26/12 09:00	03/29/12 05:07	0.99
13C-1,2,3,6,7,8-HxCDF	50		26 - 123				03/26/12 09:00	03/29/12 05:07	0.99
13C-2,3,4,6,7,8-HxCDF	51		28 ₋ 136				03/26/12 09:00	03/29/12 05:07	0.99
	46								
13C-1,2,3,7,8,9-HxCDF			29 - 147				03/26/12 09:00	03/29/12 05:07	0.99
13C-1,2,3,4,6,7,8-HpCDF	44		28 ₋ 143				03/26/12 09:00	03/29/12 05:07	0.99
13C-1,2,3,4,7,8,9-HpCDF	44		26 - 138				03/26/12 09:00	03/29/12 05:07	0.99
13C-1,2,3,4,7,8-HxCDF 	43		26 - 152				03/26/12 09:00	03/29/12 05:07	0.99

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES

Client Sample ID: Outfall 009 (Composite)

Date Collected: 03/18/12 08:12 Date Received: 03/18/12 14:40 Lab Sample ID: 440-5832-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	1100		50	40	ug/L		03/20/12 11:38	03/29/12 15:04	1
Arsenic	ND		10	7.0	ug/L		03/20/12 11:38	03/21/12 12:11	1
Boron	0.031	J,DX MB	0.050	0.020	mg/L		03/20/12 11:38	03/21/12 12:11	1
Beryllium	ND		2.0	0.90	ug/L		03/20/12 11:38	03/21/12 12:11	1
Calcium	6.1		0.10	0.050	mg/L		03/20/12 11:38	03/21/12 12:11	1
Chromium	ND		5.0	2.0	ug/L		03/20/12 11:38	03/21/12 12:11	1
lron	1.2		0.040	0.015	mg/L		03/20/12 11:38	03/21/12 12:11	1
Magnesium	1.7		0.020	0.012	mg/L		03/20/12 11:38	03/21/12 12:11	1
Nickel	2.9	J,DX	10	2.0	ug/L		03/20/12 11:38	03/21/12 12:11	1
Vanadium	4.4	J,DX	10	3.0	ug/L		03/20/12 11:38	03/21/12 12:11	1
Zinc	14	J,DX	20	6.0	ug/L		03/20/12 11:38	03/21/12 12:11	1
Silver	ND		10	6.0	ug/L		03/20/12 11:38	03/21/12 12:11	1
Hardness, as CaCO3	22	EY	0.33	0.17	mg/L		03/20/12 11:38	03/21/12 12:11	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	250		50	40	ug/L		03/23/12 09:50	03/24/12 19:26	1
Arsenic	ND		10	7.0	ug/L		03/23/12 09:50	03/24/12 19:26	1
Boron	0.027	J,DX	0.050	0.020	mg/L		03/23/12 09:50	03/24/12 19:26	1
Beryllium	ND		2.0	0.90	ug/L		03/23/12 09:50	03/24/12 19:26	1
Calcium	5.6		0.10	0.050	mg/L		03/23/12 09:50	03/24/12 19:26	1
Chromium	ND		5.0	2.0	ug/L		03/23/12 09:50	03/24/12 19:26	1
Iron	0.18		0.040	0.015	mg/L		03/23/12 09:50	03/24/12 19:26	1
Magnesium	1.5		0.020	0.012	mg/L		03/23/12 09:50	03/24/12 19:26	1
Nickel	ND		10	2.0	ug/L		03/23/12 09:50	03/24/12 19:26	1
Vanadium	ND		10	3.0	ug/L		03/23/12 09:50	03/24/12 19:26	1
Zinc	ND		20	6.0	ug/L		03/23/12 09:50	03/24/12 19:26	1
Silver	ND		10	6.0	ug/L		03/23/12 09:50	03/24/12 19:26	1
Hardness, as CaCO3	20	EY	0.33	0.17	mg/L		03/23/12 09:50	03/24/12 19:26	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		1.0	0.10	ug/L		03/20/12 11:00	03/20/12 16:27	1
Copper	4.2		2.0	0.50	ug/L		03/20/12 11:00	03/20/12 16:27	1
Lead	4.0		1.0	0.20	ug/L		03/20/12 11:00	03/20/12 16:27	1
Antimony	0.49	J,DX	2.0	0.30	ug/L		03/20/12 11:00	03/20/12 16:27	1
Selenium	ND		2.0	0.50	ug/L		03/20/12 11:00	03/20/12 16:27	1
Thallium	ND		1.0	0.20	ug/L		03/20/12 11:00	03/20/12 16:27	1

 Method: 200.8 - Metals (I	CP/MS) - Dissolved								
Analyte	*	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND ND		1.0	0.10	ug/L		03/23/12 09:53	03/23/12 23:14	1
Copper	3.3		2.0	0.50	ug/L		03/23/12 09:53	03/23/12 23:14	1
Lead	0.66	J,DX	1.0	0.20	ug/L		03/23/12 09:53	03/23/12 23:14	1
Antimony	0.45	J,DX	2.0	0.30	ug/L		03/23/12 09:53	03/23/12 23:14	1
Selenium	ND		2.0	0.50	ug/L		03/23/12 09:53	03/23/12 23:14	1
Thallium	ND		1.0	0.20	ug/L		03/23/12 09:53	03/23/12 23:14	1

Method: 245.1 - Mercury (CVAA)										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepare	ed	Analyzed	Dil Fac
Mercury	ND		0.20	0.10	ug/L		03/20/12 1	4:05	03/21/12 13:22	1

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES

TestAmerica Job ID: 440-5816-1

Client Sample ID: Outfall 009 (Composite)

Date Collected: 03/18/12 08:12 Date Received: 03/18/12 14:40 Lab Sample ID: 440-5832-1

Matrix: Water

Method: 245.1 - Mercury (CVAA) - Dissolved Analyte Res	ult Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
	ND Guarrier	0.20		ug/L		03/20/12 14:00	03/21/12 13:39	1
_	-			9. –				
General Chemistry								
Analyte Res	ult Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	41	10	10	mg/L			03/23/12 10:10	1
Total Suspended Solids	14	10	10	mg/L			03/21/12 20:39	1
Cyanide, Total	ND	0.0050	0.0030	mg/L		03/23/12 14:10	03/23/12 17:37	1
Fluoride 0	18	0.10	0.020	mg/L			03/20/12 08:35	1
Method: Asbestos - EPA 100.2 Asbestos in	Drinking Wa	ater						
Analyte Res	ult Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ASBESTOS <	2.2			MFL		03/20/12 00:00	03/22/12 00:00	1
Method: Gamma Spec K-40 CS-137 - Genera	Sub Contr	act Method						
	ult Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cesium-137 -1	39 U	2.2		pCi/L		03/27/12 00:00	03/27/12 15:50	1
Potassium-40 -7	99 U	20		pCi/L		03/27/12 00:00	03/27/12 15:50	1
Method: Gross Alpha and Beta - Gross Alph	a/Beta							
	ult Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gross Alpha 1	37 J	0.46		pCi/L		03/29/12 00:00	04/02/12 15:09	1
Gross Beta 2	46 J	0.67		pCi/L		03/29/12 00:00	04/02/12 15:09	1
Method: Radium 226 - General Sub Contract								
	ult Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Radium-226 0.2	14 U	0.38		pCi/L		04/05/12 00:00	04/05/12 14:43	1
Method: Radium 228 - RAD-226-228 combine								
	ult Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Radium-228 -0.0	55 U	0.13		pCi/L		04/06/12 00:00	04/06/12 13:23	1
Method: Strontium 90 - General Sub Contrac					_			
	ult Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Strontium-90 -0.1	07 U	0.37		pCi/L		04/06/12 00:00	04/06/12 07:23	1
Method: Tritium - General Sub Contract Met								
	ult Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tritium -3	1.6 U	85		pCi/L		03/27/12 00:00	03/27/12 22:03	1
Method: Uranium, Combined - General Sub						_		
	ult Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Uranium, Total 0.1	17 J	0.014		pCi/L		04/02/12 00:00	04/02/12 12:18	1

Client Sample ID: Trip Blank

Date Collected: 03/19/12 18:03 Date Received: 03/18/12 14:40 Lab Sample ID: 440-5832-3 Matrix: Water

Method: Gamma Spec K-40 CS-137	7 - General S	ub Contrac	ct Method						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cesium-137	-0.882	U	1.3		pCi/L		03/27/12 00:00	03/27/12 15:51	1
Potassium-40	-24.7	U	34		pCi/L		03/27/12 00:00	03/27/12 15:51	1

Client Sample Results

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES

TestAmerica Job ID: 440-5816-1

Lab Sample ID: 440-5832-3

Matrix: Water

Clie	nt	San	nple	ID	: T	rip	Bla	nk

Date Collected: 03/19/12 18:03 Date Received: 03/18/12 14:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gross Alpha	-0.039	U	0.13		pCi/L		03/29/12 00:00	04/02/12 15:09	1
Gross Beta	-0.112	U	0.55		pCi/L		03/29/12 00:00	04/02/12 15:09	1
Method: Radium 226 - Ger	neral Sub Contract M	ethod							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Radium-226	0.04	U	0.31		pCi/L		04/05/12 00:00	04/05/12 14:43	1
Method: Radium 228 - RAI		Ovelifier	DI.	MDI	11-4	Б	Duamanad	Analysed	Dil Faa
		Qualifier	DI	MDI	Unit	D	Bronarod	Analyzod	Dil Eso
Method: Radium 228 - RAI Analyte Radium-228		Qualifier U	RL	MDL	Unit pCi/L	D	Prepared 04/06/12 00:00	Analyzed 04/06/12 13:23	Dil Fac
Analyte	-0.114	U -		MDL		<u>D</u>			Dil Fac
Analyte Radium-228	Result -0.114	U -		MDL		<u>D</u>			Dil Fac
Analyte Radium-228 Method: Strontium 90 - Ge	Result -0.114	U lethod Qualifier	0.18		pCi/L		04/06/12 00:00	04/06/12 13:23	1
Analyte Radium-228 Method: Strontium 90 - Ge Analyte Strontium-90		Method Qualifier	0.18 RL 0.4		pCi/L Unit		04/06/12 00:00 Prepared	04/06/12 13:23 Analyzed	1
Analyte Radium-228 Method: Strontium 90 - Ge Analyte	neral Sub Contract M Result -0.73 ed - General Sub Co	Method Qualifier	0.18 RL 0.4	MDL	pCi/L Unit		04/06/12 00:00 Prepared	04/06/12 13:23 Analyzed	1

Lab Chronicle

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES

TestAmerica Job ID: 440-5816-1

Lab Sample ID: 440-5816-3

Matrix: Water

Client Sample ID: Outfall 009 Date Collected: 03/17/12 12:35 Date Received: 03/17/12 14:40

	Batch	Batch		Dil	Init	ial	Fin	al	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amo	unt	Amo	unt	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	10	mL	10	mL	14240	03/20/12 14:24	YK	TAL IRV
Total/NA	Analysis	624		1	10	mL	10	mL	15688	03/27/12 10:00	CP	TAL IRV
Total/NA	Analysis	218.6		1	10	mL	10	mL	13936	03/17/12 23:48	SL	TAL IRV
Total/NA	Prep	1664A			1055	mL	1000	mL	16232	03/29/12 06:37	DA	TAL IRV
Total/NA	Analysis	1664A		1					16301	03/29/12 10:37	DA	TAL IRV
Total/NA	Analysis	SM 9221E		1	100	mL	100	mL	13970		ST	TAL IRV
									(Start)	03/17/12 15:31		
									(End)	03/20/12 13:54		
Total/NA	Analysis	SM 9221F		1	100	mL	100	mL	13971		ST	TAL IRV
									(Start)	03/17/12 15:31		
									(End)	03/20/12 13:54		

Lab Sample ID: 440-5816-4 **Client Sample ID: Trip Blanks**

Date Collected: 03/17/12 12:35 Matrix: Water

Date Received: 03/17/12 14:40

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624		1	10 mL	10 mL	14240	03/20/12 10:40	YK	TAL IRV
Total/NA	Analysis	624		1	10 mL	10 mL	15688	03/27/12 10:28	CP	TAL IRV

Client Sample ID: Outfall 009 (Composite) Lab Sample ID: 440-5832-1

Date Collected: 03/18/12 08:12

Date Received: 03/18/12 14:40

	Batch	Batch	_	Dil	Init		Fin		Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amo		Amo		Number	or Analyzed	Analyst	Lab
Total/NA	Prep	525.2			1045	mL	1	mL	14160	03/19/12 17:01	LA	TAL IRV
Total/NA	Analysis	525.2		1					14340	03/20/12 18:25	JM	TAL IRV
Total/NA	Prep	625			1020	mL	2	mL	14733	03/21/12 17:48	DM	TAL IRV
Total/NA	Analysis	625		1					15425	03/25/12 20:28	UP	TAL IRV
Total/NA	Prep	608			1020	mL	2	mL	14103	03/19/12 13:37	AB	TAL IRV
Total/NA	Analysis	608		1					14342	03/20/12 18:32	DD	TAL IRV
Total/NA	Analysis	608		1					14346	03/20/12 17:42	JM	TAL IRV
Total/NA	Analysis	314.0		1	5	mL	1.0	mL	14013	03/19/12 10:49	MN	TAL IRV
Total/NA	Analysis	300.0		1	1	mL	1.0	mL	14023	03/19/12 12:33	NN	TAL IRV
Total/NA	Analysis	300.0		1	1	mL	1.0	mL	14274	03/20/12 12:55	NN	TAL IRV
Total	Prep	3542			1014.5	mL	20	uL	2086060_P	03/26/12 09:00	BG	TAL WS
Total	Analysis	1613B		0.99					2086060	03/29/12 05:07	LLH	TAL WS
Total Recoverable	Prep	200.2			50	mL	50	mL	14324	03/20/12 11:00	EN	TAL IRV
Total Recoverable	Analysis	200.8		1					14540	03/20/12 16:27	RC	TAL IRV
Dissolved	Prep	245.1			20	mL	20	mL	14376	03/20/12 14:00	SN	TAL IRV
Dissolved	Analysis	245.1		1					14655	03/21/12 13:39	DB	TAL IR\
Total Recoverable	Prep	200.2			50	mL	50	mL	14335	03/20/12 11:38	EN	TAL IR\
Total Recoverable	Analysis	200.7 Rev 4.4		1					14661	03/21/12 12:11	DP	TAL IR\
Total/NA	Prep	245.1			20	mL	20	mL	14384	03/20/12 14:05	SN	TAL IR

TestAmerica Irvine

Page 16 of 113

Matrix: Water

4/24/2012

Client: MWH Americas Inc TestAme

Project/Site: Boeing SSFL NPDES

Client Sample ID: Outfall 009 (Composite)

Date Collected: 03/18/12 08:12 Date Received: 03/18/12 14:40 Lab Sample ID: 440-5832-1

Matrix: Water

	Batch	Batch		Dil	Initial	F	inal	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Am	ount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	245.1		1		_		14706	03/21/12 13:22	DB	TAL IRV
Dissolved	Prep	200.2			50 mL	5	0 mL	15170	03/23/12 09:50	EN	TAL IRV
Dissolved	Analysis	200.7 Rev 4.4		1				15412	03/24/12 19:26	DP	TAL IRV
Dissolved	Prep	200.2			50 mL	5	0 mL	15171	03/23/12 09:53	EN	TAL IRV
Dissolved	Analysis	200.8		1				15439	03/23/12 23:14	NH	TAL IRV
Total Recoverable	Analysis	200.7 Rev 4.4		1				16403	03/29/12 15:04	VS	TAL IRV
Total/NA	Analysis	SM 4500 F C		1				14334	03/20/12 08:35	FZ	TAL IRV
Total/NA	Analysis	SM 2540D		1	100 mL	10	0 mL	14783	03/21/12 20:39	DK	TAL IRV
Total/NA	Analysis	SM 2540C		1	100 mL	10	0 mL	15174	03/23/12 10:10	DC	TAL IRV
Total/NA	Prep	Distill/CN			50 mL	5	0 mL	15221	03/23/12 14:10	PQI	TAL IRV
Total/NA	Analysis	SM 4500 CN E		1				15270	03/23/12 17:37	PQI	TAL IRV
Total/NA	Prep	NA		1				149949_P	03/20/12 00:00		EMS Labs
Total/NA	Analysis	Asbestos		1				149949	03/22/12 00:00	LK	EMS Labs
Total/NA	Prep	General Prep		1				8602_P	03/27/12 00:00		Eber-Rich
Total/NA	Analysis	Gamma Spec K-40 CS-137		1				8602	03/27/12 15:50	RFM	Eber-Rich
Total/NA	Prep	General Prep		1				8602_P	03/29/12 00:00		Eber-Rich
Total/NA	Analysis	Gross Alpha and Beta		1				8602	04/02/12 15:09	DVP	Eber-Rich
Total/NA	Prep	General Prep		1				8602_P	04/05/12 00:00		Eber-Rich
Total/NA	Analysis	Radium 226		1				8602	04/05/12 14:43	TM	Eber-Rich
Total/NA	Prep	General Prep		1				8602_P	04/06/12 00:00		Eber-Rich
Total/NA	Analysis	Radium 228		1				8602	04/06/12 13:23	ASM	Eber-Rich
Total/NA	Analysis	Strontium 90		1				8602	04/06/12 07:23	TSC	Eber-Rich
Total/NA	Analysis	Tritium		1				8602	03/27/12 22:03	WL	Eber-Rich
Total/NA	Prep	General Prep		1				8602_P	04/02/12 00:00		Eber-Rich
Total/NA	Analysis	Uranium, Combined		1				8602	04/02/12 12:18	LS	Eber-Rich

Client Sample ID: Trip Blank

Date Collected: 03/19/12 18:03 Date Received: 03/18/12 14:40 **Lab Sample ID: 440-5832-3**

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	General Prep		1			8602_P	03/27/12 00:00		Eber-Ric
Total/NA	Analysis	Gamma Spec K-40 CS-137		1			8602	03/27/12 15:51	RFM	Eber-Rick
Total/NA	Prep	General Prep		1			8602_P	03/29/12 00:00		Eber-Rick
Total/NA	Analysis	Gross Alpha and Beta		1			8602	04/02/12 15:09	DVP	Eber-Rick
Total/NA	Prep	General Prep		1			8602_P	04/05/12 00:00		Eber-Ric
Total/NA	Analysis	Radium 226		1			8602	04/05/12 14:43	TM	Eber-Rick
Total/NA	Prep	General Prep		1			8602_P	04/06/12 00:00		Eber-Rick
Total/NA	Analysis	Radium 228		1			8602	04/06/12 13:23	ASM	Eber-Rick
Total/NA	Analysis	Strontium 90		1			8602	04/06/12 07:23	TSC	Eber-Ricl
Total/NA	Prep	General Prep		1			8602 P	04/02/12 00:00		Eber-Ric

Lab Chronicle

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES

Client Sample ID: Trip Blank

TestAmerica Job ID: 440-5816-1

Lab Sample ID: 440-5832-3

Matrix: Water

Date Collected: 03/19/12 18:03 Date Received: 03/18/12 14:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Uranium, Combined		1			8602	04/02/12 12:25	LS	Eber-Rich

Laboratory References:

Eber-Rich = Eberline - Richmond, 2030 Wright Avenue, Richmond, CA 94804

EMS Labs = EMS Laboratories Pasadena, CA, 117 West Bellevue Drive, Pasadena, CA 91105-2503

EMSL = EMSL Analytical, Inc., 200 Rt 130 North, Cinnaminson, NJ 08077

SC0127 = Aquatic Testing Laboratories, 4350 Transport #107, Ventura, CA 93003

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

TAL WSC = TestAmerica West Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Client: MWH Americas Inc Project/Site: Boeing SSFL NPDES

Method: 624 - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 440-14240/4

Matrix: Water

Analyte

Acrolein

Acrylonitrile

Analysis Batch: 14240

2-Chloroethyl vinyl ether

Client Sample ID: Method Blank
Prep Type: Total/NA

мв мв Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac ND 2.0 1.8 ug/L 03/20/12 09:09 ND 5.0 4.0 ug/L 03/20/12 09:09 ND 2.0 03/20/12 09:09 1.2 ug/L

MR MR

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98		80 - 120		03/20/12 09:09	1
Dibromofluoromethane (Surr)	102		80 - 120		03/20/12 09:09	1

Lab Sample ID: LCS 440-14240/5 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 14240

LCS LCS %Rec. Spike Added Result Qualifier Unit D %Rec Limits 2-Chloroethyl vinyl ether 25.0 24.8 25 - 170 ug/L

LCS LCS Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 102 80 - 120 Dibromofluoromethane (Surr) 100 80 - 120

Lab Sample ID: 440-5182-A-1 MS Client Sample ID: Matrix Spike Prep Type: Total/NA

Matrix: Water

Analysis Batch: 14240

%Rec. Spike MS MS Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits 25.0 25 _ 170 2-Chloroethyl vinyl ether ND ND LN ug/L

MS MS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	102		80 - 120
Dibromofluoromethane (Surr)	97		80 - 120

Lab Sample ID: 440-5182-A-1 MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Water

Analysis Batch: 14240

,	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2-Chloroethyl vinyl ether	ND		25.0	ND	AY	ug/L		0	25 - 170	NC	25

MSD MSD %Recovery Qualifier Limits

MB MB

Surrogate 80 - 120 Toluene-d8 (Surr) 101 Dibromofluoromethane (Surr) 99 80 - 120

Lab Sample ID: MB 440-15688/4

Matrix: Water

Analysis Batch: 15688

Client Sample ID: Method Blank Prep Type: Total/NA

Result Qualifier RL MDL Unit D Dil Fac Analyte Prepared Analyzed 1,1,1-Trichloroethane ND 0.50 0.30 ug/L 03/27/12 08:44 ND 0.50 03/27/12 08:44 1,1,2,2-Tetrachloroethane 0.30 ug/L

Prep Type: Total/NA

Client: MWH Americas Inc Project/Site: Boeing SSFL NPDES

Method: 624 - Volatile Organic Compounds (GC/MS) (Continued)

MB MB

Lab Sample ID: MB 440-15688/4

Matrix: Water

Analysis Batch: 15688

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	ND	0.50	0.30	ug/L			03/27/12 08:44	1
1,1-Dichloroethane	ND	0.50	0.40	ug/L			03/27/12 08:44	1
1,1-Dichloroethene	ND	0.50	0.42	ug/L			03/27/12 08:44	1
1,2-Dichlorobenzene	ND	0.50	0.32	ug/L			03/27/12 08:44	1
1,2-Dichloroethane	ND	0.50	0.28	ug/L			03/27/12 08:44	1
1,2-Dichloropropane	ND	0.50	0.35	ug/L			03/27/12 08:44	1
1,3-Dichlorobenzene	ND	0.50	0.35	ug/L			03/27/12 08:44	1
1,2,3-Trichloropropane	ND	0.50	0.40	ug/L			03/27/12 08:44	1
1,4-Dichlorobenzene	ND	0.50	0.37	ug/L			03/27/12 08:44	1
Benzene	ND	0.50	0.28	ug/L			03/27/12 08:44	1
Bromoform	ND	0.50	0.40	ug/L			03/27/12 08:44	1
Bromomethane	ND	0.50	0.42	ug/L			03/27/12 08:44	1
Carbon tetrachloride	ND	0.50	0.28	ug/L			03/27/12 08:44	1
Chlorobenzene	ND	0.50	0.36	ug/L			03/27/12 08:44	1
Dibromochloromethane	ND	0.50	0.40	ug/L			03/27/12 08:44	1
Chloroethane	ND	0.50	0.40	ug/L			03/27/12 08:44	1
Chloroform	ND	0.50	0.33	ug/L			03/27/12 08:44	1
Chloromethane	ND	0.50	0.40	ug/L			03/27/12 08:44	1
cis-1,3-Dichloropropene	ND	0.50	0.22	ug/L			03/27/12 08:44	1
Bromodichloromethane	ND	0.50	0.30	ug/L			03/27/12 08:44	1
Ethylbenzene	ND	0.50	0.25	ug/L			03/27/12 08:44	1
Methylene Chloride	ND	1.0	0.95	ug/L			03/27/12 08:44	1
Tetrachloroethene	ND	0.50	0.32	ug/L			03/27/12 08:44	1
Toluene	ND	0.50	0.36	ug/L			03/27/12 08:44	1
trans-1,2-Dichloroethene	ND	0.50	0.30	ug/L			03/27/12 08:44	1
tert-Butanol	ND	10	6.5	ug/L			03/27/12 08:44	1
trans-1,3-Dichloropropene	ND	0.50	0.32	ug/L			03/27/12 08:44	1
Trichlorofluoromethane	ND	0.50	0.34	ug/L			03/27/12 08:44	1
Vinyl chloride	ND	0.50	0.40	ug/L			03/27/12 08:44	1
Trichloroethene	ND	0.50	0.26	ug/L			03/27/12 08:44	1
cis-1,2-Dichloroethene	ND	0.50	0.32	ug/L			03/27/12 08:44	1
1,2-Dibromoethane (EDB)	ND	0.50	0.40	ug/L			03/27/12 08:44	1
Diisopropyl ether	ND	0.50	0.25	ug/L			03/27/12 08:44	1
Methyl tert-butyl ether	ND	0.50	0.32	ug/L			03/27/12 08:44	1
Naphthalene	ND	0.50	0.41	ug/L			03/27/12 08:44	1
Tert-amyl methyl ether	ND	0.50	0.33				03/27/12 08:44	1
Ethyl tert-butyl ether	ND	0.50	0.28	-			03/27/12 08:44	1
Xylenes, Total	ND	1.0	0.90	ug/L			03/27/12 08:44	1

MB	MB

Surrogate	%Recovery	Qualifier	Limits	P	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	110		80 - 120			03/27/12 08:44	1
Dibromofluoromethane (Surr)	101		80 - 120			03/27/12 08:44	1
Toluene-d8 (Surr)	100		80 - 120			03/27/12 08:44	1

Spike

LCS LCS

TestAmerica Job ID: 440-5816-1

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES

Method: 624 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 440-15688/5

Matrix: Water

Analysis Batch: 15688

Client Sample ID: Lab Control Sample Prep Type: Total/NA

%Rec.

	Орико	L00 I			/01100.	
Analyte	Added	Result (Qualifier Unit	D %Rec	Limits	
1,1,1-Trichloroethane	25.0	26.8	ug/L		65 - 135	
1,1,2,2-Tetrachloroethane	25.0	25.8	ug/L	103	55 - 130	
1,1,2-Trichloroethane	25.0	25.2	ug/L	101	70 - 125	
1,1-Dichloroethane	25.0	26.9	ug/L	108	70 - 125	
1,1-Dichloroethene	25.0	25.8	ug/L	103	70 - 125	
1,2-Dichlorobenzene	25.0	26.1	ug/L	104	75 - 120	
1,2-Dichloroethane	25.0	27.3	ug/L	109	60 - 140	
1,2-Dichloropropane	25.0	25.3	ug/L	101	70 - 125	
1,3-Dichlorobenzene	25.0	25.6	ug/L	102	75 - 120	
1,2,3-Trichloropropane	25.0	24.9	ug/L	100	60 - 130	
1,4-Dichlorobenzene	25.0	25.4	ug/L	102	75 - 120	
Benzene	25.0	24.0	ug/L	96	70 - 120	
Bromoform	25.0	25.9	ug/L	104	55 - 130	
Bromomethane	25.0	27.1	ug/L	108	65 - 140	
Carbon tetrachloride	25.0	26.2	ug/L	105	65 - 140	
Chlorobenzene	25.0	25.3	ug/L	101	75 - 120	
Dibromochloromethane	25.0	27.7	ug/L	111	70 - 140	
Chloroethane	25.0	25.4	ug/L	102	60 - 140	
Chloroform	25.0	26.3	ug/L	105	70 - 130	
Chloromethane	25.0	24.5	ug/L	98	50 - 140	
cis-1,3-Dichloropropene	25.0	26.6	ug/L	106	75 - 125	
Bromodichloromethane	25.0	27.2	ug/L	109	70 - 135	
Ethylbenzene	25.0	25.7	ug/L	103	75 - 125	
Methylene Chloride	25.0	24.7	ug/L	99	55 - 130	
Tetrachloroethene	25.0	25.9	ug/L	104	70 - 125	
Toluene	25.0	25.7	ug/L	103	70 - 120	
trans-1,2-Dichloroethene	25.0	25.9	ug/L	104	70 - 125	
tert-Butanol	125	145	ug/L	116	70 - 135	
trans-1,3-Dichloropropene	25.0	27.6	ug/L	110	70 - 125	
Trichlorofluoromethane	25.0	28.1	ug/L	112	65 - 145	
Vinyl chloride	25.0	25.2	ug/L	101	55 - 135	
Trichloroethene	25.0	25.3	ug/L	101	70 - 125	
cis-1,2-Dichloroethene	25.0	27.4	ug/L	110	70 - 125	
1,2-Dibromoethane (EDB)	25.0	26.0	ug/L	104	75 - 125	
Diisopropyl ether	25.0	26.8	ug/L	107	60 - 135	
Methyl tert-butyl ether	25.0	26.4	ug/L	106	60 - 135	
Naphthalene	25.0	27.2	ug/L	109	55 - 135	
Tert-amyl methyl ether	25.0	26.9	ug/L	108	60 - 135	
Ethyl tert-butyl ether	25.0	26.1	ug/L	104	65 - 135	
Xylenes, Total	75.0	75.3	ug/L	100	70 - 125	

LCS LCS

Surrogate	%Recovery Qual	ifier Limits
4-Bromofluorobenzene (Surr)	108	80 - 120
Dibromofluoromethane (Surr)	100	80 - 120
Toluene-d8 (Surr)	101	80 - 120

TestAmerica Job ID: 440-5816-1

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES

Method: 624 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 440-5944-B-2 MS

Matrix: Water

Analysis Batch: 15688

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Analysis Batch. 13000	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	ND		25.0	23.6		ug/L		94	65 - 140	
1,1,2,2-Tetrachloroethane	ND		25.0	21.9		ug/L		88	55 _ 135	
1,1,2-Trichloroethane	ND		25.0	22.3		ug/L		89	65 - 130	
1,1-Dichloroethane	ND		25.0	23.6		ug/L		94	65 _ 130	
1,1-Dichloroethene	4.0		25.0	25.8		ug/L		87	60 - 130	
1,2-Dichlorobenzene	ND		25.0	22.5		ug/L		90	75 _ 125	
1,2-Dichloroethane	ND		25.0	24.4		ug/L		98	60 - 140	
1,2-Dichloropropane	ND		25.0	22.9		ug/L		92	65 _ 130	
1,3-Dichlorobenzene	ND		25.0	22.4		ug/L		90	75 _ 125	
1,2,3-Trichloropropane	ND		25.0	20.3		ug/L		81	55 - 135	
1,4-Dichlorobenzene	ND		25.0	22.3		ug/L		89	75 _ 125	
Benzene	ND		25.0	21.5		ug/L		86	65 _ 125	
Bromoform	ND		25.0	22.4		ug/L		90	55 - 135	
Bromomethane	ND		25.0	22.3		ug/L		89	55 - 145	
Carbon tetrachloride	ND		25.0	23.4		ug/L		94	65 - 140	
Chlorobenzene	ND		25.0	22.5		ug/L		90	75 _ 125	
Dibromochloromethane	ND		25.0	24.1		ug/L		96	65 - 140	
Chloroethane	ND		25.0	21.1		ug/L		84	55 - 140	
Chloroform	ND		25.0	23.4		ug/L		94	65 _ 135	
Chloromethane	ND		25.0	18.9		ug/L		76	45 - 145	
cis-1,3-Dichloropropene	ND		25.0	23.4		ug/L		94	70 - 130	
Bromodichloromethane	ND		25.0	24.5		ug/L		98	70 - 135	
Ethylbenzene	ND		25.0	22.9		ug/L		92	65 _ 130	
Methylene Chloride	ND		25.0	21.3		ug/L		85	50 - 135	
Tetrachloroethene	41		25.0	61.4		ug/L		83	65 _ 130	
Toluene	ND		25.0	22.7		ug/L		91	70 - 125	
trans-1,2-Dichloroethene	ND		25.0	22.7		ug/L		91	65 - 130	
tert-Butanol	ND		125	134		ug/L		107	65 - 140	
trans-1,3-Dichloropropene	ND		25.0	24.8		ug/L		99	65 - 135	
Trichlorofluoromethane	ND		25.0	24.2		ug/L		97	60 - 145	
Vinyl chloride	ND		25.0	20.3		ug/L		81	45 - 140	
Trichloroethene	33		25.0	55.6		ug/L		89	65 - 125	
cis-1,2-Dichloroethene	0.65		25.0	24.9		ug/L		97	65 - 130	
1,2-Dibromoethane (EDB)	ND		25.0	22.4		ug/L		90	70 - 130	
Diisopropyl ether	ND		25.0	23.7		ug/L		95	60 - 140	
Methyl tert-butyl ether	ND		25.0	22.7		ug/L		91	55 - 145	
Naphthalene	ND		25.0	22.4		ug/L		90	50 - 140	
Tert-amyl methyl ether	ND		25.0	23.2		ug/L		93	60 - 140	
Ethyl tert-butyl ether	ND		25.0	22.5		ug/L		90	60 - 135	
Xylenes, Total	ND		75.0	67.1		ug/L		89	60 - 130	

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	109		80 - 120
Dibromofluoromethane (Surr)	99		80 - 120
Toluene-d8 (Surr)	102		80 120

TestAmerica Irvine 4/24/2012

Page 22 of 113

Client: MWH Americas Inc Project/Site: Boeing SSFL NPDES

Method: 624 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 440-5944-B-2 MSD

Matrix: Water

Analysis Batch: 15688

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

	•	Sample	Spike		MSD				%Rec.	_	RPD
Analyte	Result	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	ND		25.0	22.1		ug/L		88	65 - 140	7	20
1,1,2,2-Tetrachloroethane	ND		25.0	21.5		ug/L		86	55 - 135	2	30
1,1,2-Trichloroethane	ND		25.0	21.2		ug/L		85	65 - 130	5	25
1,1-Dichloroethane	ND		25.0	21.9		ug/L		88	65 - 130	7	20
1,1-Dichloroethene	4.0		25.0	24.1		ug/L		80	60 - 130	7	20
1,2-Dichlorobenzene	ND		25.0	21.2		ug/L		85	75 - 125	6	20
1,2-Dichloroethane	ND		25.0	23.6		ug/L		94	60 - 140	3	20
1,2-Dichloropropane	ND		25.0	21.5		ug/L		86	65 - 130	6	20
1,3-Dichlorobenzene	ND		25.0	21.3		ug/L		85	75 - 125	5	20
1,2,3-Trichloropropane	ND		25.0	20.7		ug/L		83	55 - 135	2	30
1,4-Dichlorobenzene	ND		25.0	20.8		ug/L		83	75 - 125	7	20
Benzene	ND		25.0	20.0		ug/L		80	65 - 125	7	20
Bromoform	ND		25.0	21.9		ug/L		88	55 - 135	2	25
Bromomethane	ND		25.0	20.0		ug/L		80	55 - 145	11	25
Carbon tetrachloride	ND		25.0	22.3		ug/L		89	65 - 140	5	25
Chlorobenzene	ND		25.0	21.2		ug/L		85	75 - 125	6	20
Dibromochloromethane	ND		25.0	23.1		ug/L		92	65 - 140	4	25
Chloroethane	ND		25.0	19.5		ug/L		78	55 - 140	8	25
Chloroform	ND		25.0	22.0		ug/L		88	65 - 135	6	20
Chloromethane	ND		25.0	16.5		ug/L		66	45 - 145	14	25
cis-1,3-Dichloropropene	ND		25.0	22.3		ug/L		89	70 - 130	5	20
Bromodichloromethane	ND		25.0	23.2		ug/L		93	70 - 135	5	20
Ethylbenzene	ND		25.0	21.5		ug/L		86	65 - 130	6	20
Methylene Chloride	ND		25.0	19.9		ug/L		80	50 - 135	7	20
Tetrachloroethene	41		25.0	59.2		ug/L		74	65 - 130	4	20
Toluene	ND		25.0	21.4		ug/L		86	70 - 125	6	20
trans-1,2-Dichloroethene	ND		25.0	21.2		ug/L		85	65 - 130	7	20
tert-Butanol	ND		125	121		ug/L		97	65 - 140	10	25
trans-1,3-Dichloropropene	ND		25.0	23.4		ug/L		94	65 - 135	6	25
Trichlorofluoromethane	ND		25.0	21.9		ug/L		88	60 - 145	10	25
Vinyl chloride	ND		25.0	18.3		ug/L		73	45 - 140	10	30
Trichloroethene	33		25.0	53.6		ug/L		81	65 - 125	4	20
cis-1,2-Dichloroethene	0.65		25.0	23.3		ug/L		91	65 - 130	7	20
1,2-Dibromoethane (EDB)	ND		25.0	22.4		ug/L		90	70 - 130	0	25
Diisopropyl ether	ND		25.0	22.4		ug/L		90	60 - 140	6	25
Methyl tert-butyl ether	ND		25.0	21.9		ug/L		88	55 - 145	4	25
Naphthalene	ND		25.0	22.2		ug/L		89	50 - 140	<u>:</u> -	30
Tert-amyl methyl ether	ND		25.0	22.4		ug/L		90	60 - 140	4	30
Ethyl tert-butyl ether	ND		25.0	21.7		ug/L		87	60 - 135	4	25
Xylenes, Total	ND		75.0	62.7		ug/L		84	60 - 130	7	20

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	110		80 - 120
Dibromofluoromethane (Surr)	100		80 - 120
Toluene-d8 (Surr)	103		80 120

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES

TestAmerica Job ID: 440-5816-1

Method: 525.2 - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 440-14160/1-A

Matrix: Water

Analysis Batch: 14340

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 14160

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlorpyrifos	ND		1.0	0.080	ug/L		03/19/12 16:59	03/20/12 12:55	1
Diazinon	ND		0.25	0.040	ug/L		03/19/12 16:59	03/20/12 12:55	1

MB MB

MR MR

Surrogate	%Recovery	Qualifier Limits	Prepared	Analyzed	Dil Fac
1,3-Dimethyl-2-nitrobenzene	94	70 - 130	03/19/12 16:59	03/20/12 12:55	1
Perylene-d12	109	70 - 130	03/19/12 16:59	03/20/12 12:55	1
Triphenylphosphate	87	70 - 130	03/19/12 16:59	03/20/12 12:55	1

Lab Sample ID: LCS 440-14160/2-A

Matrix: Water

Analysis Batch: 14340

Client Sample	D: Lab Control Sam	ple
	Prep Type: Total/	NA

Prep Batch: 14160

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chlorpyrifos	5.00	5.62		ug/L		112	70 - 130	
Diazinon	5.00	4.99		ug/L		100	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,3-Dimethyl-2-nitrobenzene	89		70 - 130
Perylene-d12	112		70 - 130
Triphenylphosphate	90		70 - 130

Lab Sample ID: LCSD 440-14160/3-A

Matrix: Water

Analysis Batch: 14340

Prep Type: Total/NA

Prep Batch: 14160

Client Sample ID: Method Blank

LCSD LCSD Spike %Rec. RPD Result Qualifier Limits Limit Analyte Added Unit %Rec RPD Chlorpyrifos 5.00 5.56 111 70 - 130 30 ug/L Diazinon 5.00 70 - 130 4.96 ug/L 99 30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,3-Dimethyl-2-nitrobenzene	92		70 - 130
Perylene-d12	113		70 - 130
Triphenylphosphate	90		70 - 130

Method: 625 - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 440-14733/1-A

Analysis Batch: 15425

Matrix: Water

Prep Type: Total/NA Prep Batch: 14733 мв мв

	IND	INID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	ND		10.0	2.50	ug/L		03/21/12 17:48	03/25/12 15:12	1
1,2-Dichlorobenzene	ND		10.0	3.00	ug/L		03/21/12 17:48	03/25/12 15:12	1
1,2-Diphenylhydrazine(as	ND		20.0	2.50	ug/L		03/21/12 17:48	03/25/12 15:12	1
Azobenzene)									
1,3-Dichlorobenzene	ND		10.0	3.00	ug/L		03/21/12 17:48	03/25/12 15:12	1
1,4-Dichlorobenzene	ND		10.0	2.50	ug/L		03/21/12 17:48	03/25/12 15:12	1
2,4,6-Trichlorophenol	ND		20.0	4.50	ug/L		03/21/12 17:48	03/25/12 15:12	1
2,4-Dichlorophenol	ND		10.0	3.50	ug/L		03/21/12 17:48	03/25/12 15:12	1

Client: MWH Americas Inc Project/Site: Boeing SSFL NPDES

Method: 625 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 440-14733/1-A

Matrix: Water

Analysis Batch: 15425

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 14/33					
Analyzed	Dil Fac				
03/25/12 15:12	1				
03/25/12 15:12	1				
	Analyzed 03/25/12 15:12				

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
2,4-Dimethylphenol	ND		20.0	3.50	ug/L		03/21/12 17:48	03/25/12 15:12	
2,4-Dinitrophenol	ND		20.0	8.00	ug/L		03/21/12 17:48	03/25/12 15:12	
2,4-Dinitrotoluene	ND		10.0	3.50	ug/L		03/21/12 17:48	03/25/12 15:12	
2,6-Dinitrotoluene	ND		10.0	2.00	ug/L		03/21/12 17:48	03/25/12 15:12	
2-Chloronaphthalene	ND		10.0	3.00	ug/L		03/21/12 17:48	03/25/12 15:12	
2-Chlorophenol	ND		10.0	3.00	ug/L		03/21/12 17:48	03/25/12 15:12	
2-Methylnaphthalene	ND		10.0	2.00	ug/L		03/21/12 17:48	03/25/12 15:12	
2-Methylphenol	ND		10.0	3.00	ug/L		03/21/12 17:48	03/25/12 15:12	
2-Nitroaniline	ND		20.0	2.00	ug/L		03/21/12 17:48	03/25/12 15:12	
2-Nitrophenol	ND		10.0	3.50	ug/L		03/21/12 17:48	03/25/12 15:12	
3,3'-Dichlorobenzidine	ND		20.0	7.50	ug/L		03/21/12 17:48	03/25/12 15:12	
3-Nitroaniline	ND		20.0	3.00	ug/L		03/21/12 17:48	03/25/12 15:12	
4,6-Dinitro-2-methylphenol	ND		20.0	4.00	ug/L		03/21/12 17:48	03/25/12 15:12	
4-Bromophenyl phenyl ether	ND		10.0	3.00	ug/L		03/21/12 17:48	03/25/12 15:12	
4-Chloro-3-methylphenol	ND		20.0	2.50			03/21/12 17:48	03/25/12 15:12	
4-Chloroaniline	ND		10.0		ug/L		03/21/12 17:48	03/25/12 15:12	
4-Chlorophenyl phenyl ether	ND		10.0	2.50	-		03/21/12 17:48	03/25/12 15:12	
4-Methylphenol	ND		10.0		ug/L		03/21/12 17:48	03/25/12 15:12	
4-Nitroaniline	ND		20.0	4.00	ug/L		03/21/12 17:48	03/25/12 15:12	
4-Nitrophenol	ND		20.0		ug/L		03/21/12 17:48	03/25/12 15:12	
Acenaphthene	ND		10.0	3.00	ug/L		03/21/12 17:48	03/25/12 15:12	
Acenaphthylene	ND		10.0	3.00	ug/L		03/21/12 17:48	03/25/12 15:12	
Aniline	ND		10.0	3.50	-		03/21/12 17:48	03/25/12 15:12	
Anthracene	ND		10.0	2.50			03/21/12 17:48	03/25/12 15:12	
Benzidine	ND		20.0	10.0			03/21/12 17:48	03/25/12 15:12	
Benzo[a]anthracene	ND		10.0	2.50	-		03/21/12 17:48	03/25/12 15:12	
Benzo[a]pyrene	ND		10.0	3.00			03/21/12 17:48	03/25/12 15:12	
Benzo[b]fluoranthene	ND		10.0	2.00			03/21/12 17:48	03/25/12 15:12	
Benzo[g,h,i]perylene	ND		10.0	4.00			03/21/12 17:48	03/25/12 15:12	
Benzo[k]fluoranthene	ND		10.0	2.50			03/21/12 17:48	03/25/12 15:12	
Benzoic acid	ND		20.0		ug/L		03/21/12 17:48	03/25/12 15:12	
Benzyl alcohol	ND		20.0		ug/L ug/L		03/21/12 17:48	03/25/12 15:12	
Bis(2-chloroethoxy)methane	ND ND		10.0				03/21/12 17:48	03/25/12 15:12	
•	ND		10.0		ug/L		03/21/12 17:48		
Bis(2-chloroethyl)ether	ND ND			3.00 2.50	ug/L			03/25/12 15:12	
bis (2-chloroisopropyl) ether Bis(2-ethylhexyl) phthalate			10.0				03/21/12 17:48	03/25/12 15:12	
	ND		50.0	4.00	-		03/21/12 17:48	03/25/12 15:12	
Butyl benzyl phthalate	ND		20.0	4.00	-		03/21/12 17:48	03/25/12 15:12	
Chrysene	ND		10.0	2.50			03/21/12 17:48	03/25/12 15:12	
Di-n-butyl phthalate	ND		20.0	3.00	-		03/21/12 17:48	03/25/12 15:12	
Di-n-octyl phthalate	ND		20.0	3.50	-		03/21/12 17:48	03/25/12 15:12	
Dibenz(a,h)anthracene	ND		20.0	3.00			03/21/12 17:48	03/25/12 15:12	
Dibenzofuran	ND		10.0	4.00	-		03/21/12 17:48	03/25/12 15:12	
Diethyl phthalate	ND		10.0	3.50	-		03/21/12 17:48	03/25/12 15:12	
Dimethyl phthalate 	ND		10.0	2.50			03/21/12 17:48	03/25/12 15:12	
Fluoranthene 	ND		10.0	3.00	-		03/21/12 17:48	03/25/12 15:12	
Fluorene	ND		10.0	3.00	-		03/21/12 17:48	03/25/12 15:12	
Hexachlorobenzene	ND		10.0	3.00			03/21/12 17:48	03/25/12 15:12	
Hexachlorobutadiene	ND		10.0	4.00	-		03/21/12 17:48	03/25/12 15:12	
Hexachlorocyclopentadiene	ND		20.0	5.00			03/21/12 17:48	03/25/12 15:12	
Hexachloroethane	ND		10.0	3.50	ug/L		03/21/12 17:48	03/25/12 15:12	

Client: MWH Americas Inc Project/Site: Boeing SSFL NPDES

Method: 625 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 440-14733/1-A

Lab Sample ID: LCS 440-14733/2-A

Matrix: Water

Matrix: Water

Analysis Batch: 15425

Client Sample ID: Method Blank

Prep Type: Total/NA
Prep Batch: 14733

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Indeno[1,2,3-cd]pyrene	ND		20.0	3.50	ug/L		03/21/12 17:48	03/25/12 15:12	1
Isophorone	ND		10.0	3.00	ug/L		03/21/12 17:48	03/25/12 15:12	1
N-Nitrosodimethylamine	ND		20.0	2.50	ug/L		03/21/12 17:48	03/25/12 15:12	1
N-Nitrosodi-n-propylamine	ND		10.0	3.50	ug/L		03/21/12 17:48	03/25/12 15:12	1
N-Nitrosodiphenylamine	ND		10.0	2.00	ug/L		03/21/12 17:48	03/25/12 15:12	1
Naphthalene	ND		10.0	3.00	ug/L		03/21/12 17:48	03/25/12 15:12	1
Nitrobenzene	ND		20.0	3.00	ug/L		03/21/12 17:48	03/25/12 15:12	1
Pentachlorophenol	ND		20.0	3.50	ug/L		03/21/12 17:48	03/25/12 15:12	1
Phenanthrene	ND		10.0	3.50	ug/L		03/21/12 17:48	03/25/12 15:12	1
Phenol	ND		10.0	2.00	ug/L		03/21/12 17:48	03/25/12 15:12	1
Pyrene	ND		10.0	4.00	ug/L		03/21/12 17:48	03/25/12 15:12	1

MB MB

MR MR

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	82		50 - 120	03/21/12 17:48	03/25/12 15:12	1
2-Fluorophenol	76		30 - 120	03/21/12 17:48	03/25/12 15:12	1
2,4,6-Tribromophenol	89		40 - 120	03/21/12 17:48	03/25/12 15:12	1
Nitrobenzene-d5	94		45 - 120	03/21/12 17:48	03/25/12 15:12	1
Terphenyl-d14	102		50 - 125	03/21/12 17:48	03/25/12 15:12	1
Phenol-d6	77		35 - 120	03/21/12 17:48	03/25/12 15:12	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Matrix. Water							Trep Type: Total/IV
Analysis Batch: 15425							Prep Batch: 1473
	Spike		LCS		_		%Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
1,2,4-Trichlorobenzene	100	73.60		ug/L		74	45 - 120
1,2-Dichlorobenzene	100	67.00		ug/L		67	40 - 120
1,2-Diphenylhydrazine(as	100	106.8		ug/L		107	60 - 120
Azobenzene)							
1,3-Dichlorobenzene	100	63.00		ug/L		63	35 - 120
1,4-Dichlorobenzene	100	64.40		ug/L		64	35 - 120
2,4,6-Trichlorophenol	100	92.20		ug/L		92	55 - 120
2,4-Dichlorophenol	100	89.60		ug/L		90	55 - 120
2,4-Dimethylphenol	100	81.20		ug/L		81	40 - 120
2,4-Dinitrophenol	100	89.80		ug/L		90	40 - 120
2,4-Dinitrotoluene	100	100.6		ug/L		101	65 - 120
2,6-Dinitrotoluene	100	99.40		ug/L		99	65 - 120
2-Chloronaphthalene	100	87.40		ug/L		87	60 - 120
2-Chlorophenol	100	80.40		ug/L		80	45 - 120
2-Methylnaphthalene	100	90.40		ug/L		90	55 - 120
2-Methylphenol	100	86.00		ug/L		86	50 - 120
2-Nitroaniline	100	113.0		ug/L		113	65 _ 120
2-Nitrophenol	100	91.20		ug/L		91	50 - 120
3,3'-Dichlorobenzidine	100	84.80		ug/L		85	45 _ 135
3-Nitroaniline	100	103.4		ug/L		103	60 - 120
4,6-Dinitro-2-methylphenol	100	99.00		ug/L		99	45 _ 120
4-Bromophenyl phenyl ether	100	97.80		ug/L		98	60 - 120
4-Chloro-3-methylphenol	100	94.00		ug/L		94	60 - 120
4-Chloroaniline	100	95.20		ug/L		95	55 - 120
4-Chlorophenyl phenyl ether	100	97.00		ug/L		97	65 - 120

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES

Method: 625 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 440-14733/2-A

Matrix: Water

Analysis Batch: 15425

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 14733

Analysis Batch: 15425	Spike	LCS	LCS		%Rec.	14/33
Analyte	Added	Result	Qualifier Unit	D %Rec	Limits	
4-Methylphenol	100	86.40	ug/L		50 - 120	
4-Nitroaniline	100	108.2	ug/L	108	55 - 125	
4-Nitrophenol	100	97.40	ug/L	97	45 - 120	
Acenaphthene	100	86.00	ug/L	86	60 - 120	
Acenaphthylene	100	103.4	ug/L	103	60 - 120	
Aniline	100	88.00	ug/L	88	35 - 120	
Anthracene	100	98.00	ug/L	98	65 - 120	
Benzidine	100	95.80	ug/L	96	30 - 160	
Benzo[a]anthracene	100	94.00	ug/L	94	65 - 120	
Benzo[a]pyrene	100	97.40	ug/L	97	55 - 130	
Benzo[b]fluoranthene	100	89.80	ug/L	90	55 - 125	
Benzo[g,h,i]perylene	100	100.6	ug/L	101	45 _ 135	
Benzo[k]fluoranthene	100	100.2	ug/L	100	50 - 125	
Benzoic acid	100	76.40	ug/L	76	25 _ 120	
Benzyl alcohol	100	93.60	ug/L	94	50 - 120	
Bis(2-chloroethoxy)methane	100	96.40	ug/L	96	55 - 120	
Bis(2-chloroethyl)ether	100	88.20	ug/L	88	50 - 120	
bis (2-chloroisopropyl) ether	100	99.40	ug/L	99	45 - 120	
Bis(2-ethylhexyl) phthalate	100	98.20	ug/L	98	65 _ 130	
Butyl benzyl phthalate	100	100.0	ug/L	100	55 - 130	
Chrysene	100	96.20	ug/L	96	65 - 120	
Di-n-butyl phthalate	100	99.80	ug/L	100	60 - 125	
Di-n-octyl phthalate	100	101.6	ug/L	102	65 _ 135	
Dibenz(a,h)anthracene	100	96.60	ug/L	97	50 _ 135	
Dibenzofuran	100	95.20	ug/L	95	65 _ 120	
Diethyl phthalate	100	94.60	ug/L	95	55 - 120	
Dimethyl phthalate	100	95.60	ug/L	96	30 - 120	
Fluoranthene	100	100.4	ug/L	100	60 - 120	
Fluorene	100	96.40	ug/L	96	65 - 120	
Hexachlorobenzene	100	97.00	ug/L	97	60 - 120	
Hexachlorobutadiene	100	67.60	ug/L	68	40 - 120	
Hexachlorocyclopentadiene	100	69.00	ug/L	69	25 - 120	
Hexachloroethane	100	61.20	ug/L	61	35 - 120	
Indeno[1,2,3-cd]pyrene	100	102.2	ug/L	102	45 - 135	
Isophorone	100	104.8	ug/L	105	50 - 120	
N-Nitrosodimethylamine	100	92.20	ug/L	92	45 - 120	
N-Nitrosodi-n-propylamine	100	102.8	ug/L	103	45 - 120	
N-Nitrosodiphenylamine	100	90.20	ug/L	90	60 - 120	
Naphthalene	100	80.60	ug/L	81	55 - 120	
Nitrobenzene	100	97.00	ug/L	97	55 - 120	
Pentachlorophenol	100	91.20	ug/L	91	24 - 121	
Phenanthrene	100	94.00	ug/L	94	65 - 120	
Phenol	100	78.80	ug/L	79	40 - 120	
Pyrene	100	107.4	ug/L	107	55 - 125	
10	S LCS					
LU	U LUJ					

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	90		50 - 120
2-Fluorophenol	75		30 - 120
2,4,6-Tribromophenol	101		40 - 120

QC Sample Results

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES

TestAmerica Job ID: 440-5816-1

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 14733

Method: 625 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 440-14733/2-A

Lab Sample ID: LCSD 440-14733/3-A

Matrix: Water

Matrix: Water

2-Methylphenol

Benzyl alcohol

Bis(2-chloroethoxy)methane

Analyte

Analysis Batch: 15425

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	99		45 - 120
Terphenyl-d14	115		50 - 125
Phenol-d6	77		35 - 120

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 14733

25

25

30

20

25

20

25

20

20

20

25

25

25

25

25

25

25

20

20

20

30

20

20

30

20

35

20

25

25

25

20

30

20

20

Analysis Batch: 15425 Spike LCSD LCSD **RPD** Limit Added Result Qualifier Unit D %Rec Limits **RPD** 100 68.20 68 45 - 120 8 20 1,2,4-Trichlorobenzene ug/L 100 1.2-Dichlorobenzene 69.20 ug/L 69 40 - 120 3 25 100 100.2 ug/L 100 60 - 120 6 25

1,2-Diphenylhydrazine(as Azobenzene) 64 1,3-Dichlorobenzene 100 63.80 ug/L 35 - 1201,4-Dichlorobenzene 100 66.60 ug/L 67 35 - 120 3 2,4,6-Trichlorophenol 100 89 55 - 120 89.40 ug/L 3 2,4-Dichlorophenol 100 85.60 ug/L 86 55 - 120

2,4-Dimethylphenol 100 79.80 80 40 - 120 25 ug/L 2 2,4-Dinitrophenol 100 87.40 87 40 - 120 ug/L 100 96 65 - 120 2.4-Dinitrotoluene 96 20 ug/L 20 2,6-Dinitrotoluene 100 94.40 94 65 - 120 ug/L 2-Chloronaphthalene 100 84.40 84 60 - 120 3 20 ug/L 2-Chlorophenol 100 80.60 ug/L 81 45 - 120 Ō 2-Methylnaphthalene 100 84.00 84 ug/L 55 - 120

2-Nitroaniline 100 109.6 ug/L 110 65 - 120 2-Nitrophenol 100 86.80 ug/L 87 50 - 120 5 3,3'-Dichlorobenzidine 100 72.20 ug/L 72 45 - 135 16 3-Nitroaniline 100 99.40 ug/L 99 60 - 1204 4,6-Dinitro-2-methylphenol 100 93.20 ug/L 93 45 - 120 6 100 4-Bromophenyl phenyl ether 92.60 ug/L 93 60 - 120 5

87.00

ug/L

ug/L

ug/L

87

94

90

50 - 120

55 - 120

50 - 120

100

4-Chloro-3-methylphenol 100 89.40 ug/L 89 60 - 120 100 91.20 91 55 - 120 4-Chloroaniline ug/L 4-Chlorophenyl phenyl ether 100 92.20 ug/L 92 65 - 120 4-Methylphenol 100 86.80 87 50 - 120 0 ug/L 4-Nitroaniline 100 100.6 ug/L 101 55 - 125 4-Nitrophenol 100 95.20 ug/L 95 45 - 120

Acenaphthene 100 85.00 ug/L 85 60 - 120 Acenaphthylene 100 97.80 ug/L 98 60 - 120 100 96 Aniline 96.40 ug/L 35 - 120 Anthracene 100 92.60 ug/L 93 65 - 120 Benzidine 100 116.8 ug/L 117 30 - 160 20 Benzo[a]anthracene 100 88.20 ug/L 88 65 - 1206

Benzo[a]pyrene 100 92.40 ug/L 92 55 - 130 5 Benzo[b]fluoranthene 100 83.20 ug/L 55 - 125 Benzo[g,h,i]perylene 100 95 20 ug/L 95 45 - 135 6 Benzo[k]fluoranthene 100 95.60 ug/L 96 50 - 125 100 77 25 - 120 Benzoic acid 77.20 ug/L

100

100

93.80

90.40

Project/Site: Boeing SSFL NPDES

Method: 625 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 440-14733/3-A

Matrix: Water

Analysis Batch: 15425

Client: MWH Americas Inc

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 14733

•	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Bis(2-chloroethyl)ether	100	85.60		ug/L		86	50 - 120	3	20
bis (2-chloroisopropyl) ether	100	98.00		ug/L		98	45 - 120	1	20
Bis(2-ethylhexyl) phthalate	100	91.60		ug/L		92	65 - 130	7	20
Butyl benzyl phthalate	100	93.00		ug/L		93	55 - 130	7	20
Chrysene	100	90.40		ug/L		90	65 - 120	6	20
Di-n-butyl phthalate	100	92.80		ug/L		93	60 - 125	7	20
Di-n-octyl phthalate	100	94.80		ug/L		95	65 - 135	7	20
Dibenz(a,h)anthracene	100	92.80		ug/L		93	50 - 135	4	25
Dibenzofuran	100	91.40		ug/L		91	65 - 120	4	20
Diethyl phthalate	100	90.40		ug/L		90	55 - 120	5	30
Dimethyl phthalate	100	90.20		ug/L		90	30 - 120	6	30
Fluoranthene	100	94.80		ug/L		95	60 - 120	6	20
Fluorene	100	92.40		ug/L		92	65 - 120	4	20
Hexachlorobenzene	100	90.20		ug/L		90	60 - 120	7	20
Hexachlorobutadiene	100	62.00		ug/L		62	40 - 120	9	25
Hexachlorocyclopentadiene	100	64.40		ug/L		64	25 - 120	7	30
Hexachloroethane	100	62.40		ug/L		62	35 - 120	2	25
Indeno[1,2,3-cd]pyrene	100	98.00		ug/L		98	45 - 135	4	25
Isophorone	100	96.20		ug/L		96	50 - 120	9	20
N-Nitrosodimethylamine	100	89.80		ug/L		90	45 - 120	3	20
N-Nitrosodi-n-propylamine	100	103.2		ug/L		103	45 - 120	0	20
N-Nitrosodiphenylamine	100	86.00		ug/L		86	60 - 120	5	20
Naphthalene	100	79.00		ug/L		79	55 - 120	2	20
Nitrobenzene	100	91.80		ug/L		92	55 - 120	6	25
Pentachlorophenol	100	87.80		ug/L		88	24 - 121	4	25
Phenanthrene	100	89.40		ug/L		89	65 - 120	5	20
Phenol	100	80.80		ug/L		81	40 - 120	3	25
Pyrene	100	101.2		ug/L		101	55 - 125	6	25

LCS	D LCS	SD

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	87		50 - 120
2-Fluorophenol	74		30 - 120
2,4,6-Tribromophenol	98		40 - 120
Nitrobenzene-d5	93		45 - 120
Terphenyl-d14	108		50 - 125
Phenol-d6	80		35 - 120

Method: 608 - Organochlorine Pesticides in Water

Lab Sample ID: MB 440-14103/1-A

Matrix: Water

Analysis Batch: 14342

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 14103

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND		0.0050	0.0015	ug/L		03/19/12 13:37	03/20/12 14:15	1
alpha-BHC	ND		0.0050	0.0025	ug/L		03/19/12 13:37	03/20/12 14:15	1
beta-BHC	ND		0.010	0.0040	ug/L		03/19/12 13:37	03/20/12 14:15	1
Chlordane (technical)	ND		0.10	0.0080	ug/L		03/19/12 13:37	03/20/12 14:15	1
delta-BHC	ND		0.0050	0.0035	ua/L		03/19/12 13:37	03/20/12 14:15	1

RL

0.0050

0.0050

0.0050

0.010

0.0050

0.010

0.010

0.010

0.0050

0.0050

0.0050

0.010

Limits

35 - 115

0.50

MDL Unit

ug/L

0.0020 ug/L

0.0020 ug/L

0.0030 ug/L

0.0020 ug/L

0.0020 ug/L

0.0030 ug/L

0.0030 ug/L

0.0025 ug/L

0.0040 ug/L

0.0030 ug/L

0.0040 ug/L

0.25 ug/L

0.0030

TestAmerica Job ID: 440-5816-1

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES

MB MB Result Qualifier

ND

75

%Recovery

MB MB

Qualifier

Method: 608 - Organochlorine Pesticides in Water (Continued)

Lab Sample ID: MB 440-14103/1-A

Matrix: Water

Analyte

Dieldrin

Endrin

Endosulfan I

Endosulfan II

Endosulfan sulfate

Endrin aldehyde

Heptachlor

Toxaphene

4,4'-DDD

4,4'-DDE

4,4'-DDT

Surrogate

Tetrachloro-m-xylene

Matrix: Water

Analysis Batch: 14342

Lab Sample ID: LCS 440-14103/2-A

gamma-BHC (Lindane)

Heptachlor epoxide

Analysis Batch: 14342

Client Sample ID: Method Blank

Prepared

03/19/12 13:37

03/19/12 13:37

03/19/12 13:37

03/19/12 13:37

03/19/12 13:37

03/19/12 13:37

03/19/12 13:37

03/19/12 13:37

03/19/12 13:37

03/19/12 13:37

03/19/12 13:37

03/19/12 13:37

03/19/12 13:37

Prepared

03/19/12 13:37

Prep Batch: 14103

Dil Fac

Prep Type: Total/NA

Analyzed

03/20/12 14:15

03/20/12 14:15

03/20/12 14:15

03/20/12 14:15

03/20/12 14:15

03/20/12 14:15

03/20/12 14:15

03/20/12 14:15

03/20/12 14:15

03/20/12 14:15

03/20/12 14:15

03/20/12 14:15

03/20/12 14:15

Analyzed

03/20/12 14:15

Dil Fac

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 14103

,	0 !!	1.00	1.00					
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aldrin	0.500	0.441		ug/L		88	40 - 115	
alpha-BHC	0.500	0.458		ug/L		92	45 - 115	
beta-BHC	0.500	0.456		ug/L		91	55 - 115	
delta-BHC	0.500	0.479		ug/L		96	55 _ 115	
Dieldrin	0.500	0.467		ug/L		93	55 - 115	
Endosulfan I	0.500	0.453		ug/L		91	55 - 115	
Endosulfan II	0.500	0.467		ug/L		93	55 - 120	
Endosulfan sulfate	0.500	0.483		ug/L		97	60 - 120	
Endrin	0.500	0.460		ug/L		92	55 - 115	
Endrin aldehyde	0.500	0.508		ug/L		102	50 - 120	
gamma-BHC (Lindane)	0.500	0.464		ug/L		93	45 - 115	
Heptachlor	0.500	0.455		ug/L		91	45 - 115	
Heptachlor epoxide	0.500	0.452		ug/L		90	55 - 115	
4,4'-DDD	0.500	0.500		ug/L		100	55 - 120	
4,4'-DDE	0.500	0.460		ug/L		92	50 - 120	
4,4'-DDT	0.500	0.518		ug/L		104	55 - 120	

LCS LCS

Surrogate %Recovery Qualifier Limits Tetrachloro-m-xylene 77 35 - 115

Lab Sample ID: LCSD 440-14103/3-A

Matrix: Water

Analysis Batch: 14342

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA
	D D () 44400

Prep Batch: 14103

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aldrin	0.500	0.433		ug/L		87	40 - 115	2	30
alpha-BHC	0.500	0.449		ug/L		90	45 - 115	2	30

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES

Method: 608 - Organochlorine Pesticides in Water (Continued)

Lab Sample ID: LCSD 440-14103/3-A **Matrix: Water**

Analysis Batch: 14342

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 14103

Spike	LCSD	LUGD				%Rec.		RPD
Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
0.500	0.461		ug/L		92	55 - 115	1	30
0.500	0.478		ug/L		96	55 - 115	0	30
0.500	0.469		ug/L		94	55 - 115	0	30
0.500	0.455		ug/L		91	55 - 115	1	30
0.500	0.469		ug/L		94	55 - 120	0	30
0.500	0.488		ug/L		98	60 - 120	1	30
0.500	0.479		ug/L		96	55 - 115	4	30
0.500	0.506		ug/L		101	50 - 120	0	30
0.500	0.459		ug/L		92	45 - 115	1	30
0.500	0.454		ug/L		91	45 - 115	0	30
0.500	0.452		ug/L		90	55 - 115	0	30
0.500	0.500		ug/L		100	55 - 120	0	30
0.500	0.465		ug/L		93	50 - 120	1	30
0.500	0.526		ug/L		105	55 - 120	2	30
	Added 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	Added Result 0.500 0.461 0.500 0.478 0.500 0.469 0.500 0.455 0.500 0.469 0.500 0.488 0.500 0.479 0.500 0.506 0.500 0.459 0.500 0.454 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.465	Added Result Qualifier 0.500 0.461 0.461 0.500 0.478 0.500 0.500 0.469 0.455 0.500 0.469 0.469 0.500 0.488 0.500 0.500 0.479 0.506 0.500 0.459 0.506 0.500 0.454 0.500 0.500 0.452 0.500 0.500 0.500 0.500 0.500 0.465 0.500	Added Result Qualifier Unit 0.500 0.461 ug/L 0.500 0.478 ug/L 0.500 0.469 ug/L 0.500 0.455 ug/L 0.500 0.469 ug/L 0.500 0.488 ug/L 0.500 0.479 ug/L 0.500 0.506 ug/L 0.500 0.459 ug/L 0.500 0.454 ug/L 0.500 0.452 ug/L 0.500 0.500 ug/L 0.500 0.500 ug/L 0.500 0.465 ug/L	Added Result Qualifier Unit D 0.500 0.461 ug/L ug/L 0.500 0.478 ug/L ug/L 0.500 0.469 ug/L 0.500 0.455 ug/L 0.500 0.469 ug/L 0.500 0.488 ug/L 0.500 0.479 ug/L 0.500 0.506 ug/L 0.500 0.459 ug/L 0.500 0.454 ug/L 0.500 0.452 ug/L 0.500 0.500 ug/L 0.500 0.465 ug/L	Added Result Qualifier Unit D %Rec 0.500 0.461 ug/L 92 0.500 0.478 ug/L 96 0.500 0.469 ug/L 94 0.500 0.455 ug/L 94 0.500 0.469 ug/L 98 0.500 0.488 ug/L 98 0.500 0.479 ug/L 96 0.500 0.506 ug/L 101 0.500 0.459 ug/L 92 0.500 0.454 ug/L 91 0.500 0.454 ug/L 90 0.500 0.500 ug/L 100 0.500 0.465 ug/L 93	Added Result Qualifier Unit D %Rec Limits 0.500 0.461 ug/L 92 55 - 115 0.500 0.478 ug/L 96 55 - 115 0.500 0.469 ug/L 94 55 - 115 0.500 0.469 ug/L 94 55 - 120 0.500 0.488 ug/L 98 60 - 120 0.500 0.479 ug/L 96 55 - 115 0.500 0.506 ug/L 101 50 - 120 0.500 0.459 ug/L 92 45 - 115 0.500 0.454 ug/L 91 45 - 115 0.500 0.454 ug/L 90 55 - 115 0.500 0.500 ug/L 90 55 - 115 0.500 0.452 ug/L 90 55 - 120 0.500 0.500 ug/L 90 55 - 120 0.500 0.465 ug/L 93 50 - 120 <	Added Result Qualifier Unit D %Rec Limits RPD 0.500 0.461 ug/L 92 55 - 115 1 0.500 0.478 ug/L 96 55 - 115 0 0.500 0.469 ug/L 94 55 - 115 1 0.500 0.469 ug/L 94 55 - 120 0 0.500 0.488 ug/L 98 60 - 120 1 0.500 0.479 ug/L 96 55 - 115 4 0.500 0.506 ug/L 101 50 - 120 0 0.500 0.459 ug/L 92 45 - 115 1 0.500 0.459 ug/L 92 45 - 115 1 0.500 0.454 ug/L 91 45 - 115 0 0.500 0.452 ug/L 90 55 - 115 0 0.500 0.500 ug/L 90 55 - 120 0 <

LCSD LCSD

Surrogate %Recovery Qualifier Limits Tetrachloro-m-xylene 35 - 115 74

Method: 608 - Polychlorinated Biphenyls (PCBs) (GC)

Lab Sample ID: MB 440-14103/1-A

Matrix: Water

Analysis Batch: 14346

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 14103

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aroclor 1016	ND	· -	0.50	0.25	ug/L		03/19/12 13:37	03/20/12 14:39	1
Aroclor 1221	ND		0.50	0.25	ug/L		03/19/12 13:37	03/20/12 14:39	1
Aroclor 1232	ND		0.50	0.25	ug/L		03/19/12 13:37	03/20/12 14:39	1
Aroclor 1242	ND		0.50	0.25	ug/L		03/19/12 13:37	03/20/12 14:39	1
Aroclor 1248	ND		0.50	0.25	ug/L		03/19/12 13:37	03/20/12 14:39	1
Aroclor 1254	ND		0.50	0.25	ug/L		03/19/12 13:37	03/20/12 14:39	1
Aroclor 1260	ND		0.50	0.25	ug/L		03/19/12 13:37	03/20/12 14:39	1

MB MB

%Recovery Qualifier Limits Prepared Dil Fac Surrogate Analyzed DCB Decachlorobiphenyl (Surr) 86 45 - 120 03/19/12 13:37 03/20/12 14:39

Lab Sample ID: LCS 440-14103/4-A

Matrix: Water

Analysis Batch: 14346

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 14103

	Spike	LCS	LCS			%Rec.
Analyte	Added	l Result	Qualifier	Unit D	%Rec	Limits
Aroclor 1016	4.00	3.20		ug/L	80	50 - 115
Aroclor 1260	4.00	3.31	1	ug/L	83	60 _ 120

LCS LCS

Surrogate %Recovery Qualifier Limits DCB Decachlorobiphenyl (Surr) 83 45 - 120

> TestAmerica Irvine 4/24/2012

Page 31 of 113

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES

TestAmerica Job ID: 440-5816-1

Method: 608 - Polychlorinated Biphenyls (PCBs) (GC) (Continued)

Lab Sample ID: LCSD 440-14103/5-A Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 14346** Prep Batch: 14103

	Бріке	LC2D	LCSD				%Rec.		KPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aroclor 1016	 4.00	3.19		ug/L		80	50 - 115	0.000	30
Aroclor 1260	4.00	3.31		ug/L		83	60 - 120	0.000	25

LCSD LCSD %Recovery Qualifier Surrogate I imits DCB Decachlorobiphenyl (Surr) 82 45 - 120

Method: 218.6 - Chromium, Hexavalent (Ion Chromatography)

Lab Sample ID: MB 440-13936/3 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 13936

мв мв Result Qualifier MDL Unit Analyzed Dil Fac ND 1.0 0.25 ug/L 03/17/12 23:03 Chromium, hexavalent

Lab Sample ID: LCS 440-13936/2 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 13936

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chromium, hexavalent	 50.0	50.3		ug/L	_	101	90 - 110	

Lab Sample ID: 440-5816-3 MS Client Sample ID: Outfall 009 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 13936

1 1	maryoro Batom 10000									
		Sample	Sample	Spike	MS	MS				%Rec.
A	analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
	Chromium, hexavalent	ND		50.0	51.2		ug/L		102	90 - 110

Lab Sample ID: 440-5816-3 MSD Client Sample ID: Outfall 009 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 13936

7 many ord Date min 10000											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chromium, hexavalent	ND		50.0	51.2		ug/L		102	90 - 110	0	10

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 440-14023/3 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 14023

IVID	IVID		
Result	Qualifier	RL	MDL Unit

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate Nitrite as N	ND		0.26	0.19	mg/L			03/19/12 10:43	1

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES

TestAmerica Job ID: 440-5816-1

Client Sample ID: Matrix Spike Duplicate

Client Sample ID: Method Blank

03/19/12 09:39

Prop Type: Total/NA

Prep Type: Total/NA

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: MB 440-14274/3 **Matrix: Water**

Analysis Batch: 14274

Analyte

Chloride

Sulfate

Client Sample ID: Method Blank Prep Type: Total/NA

мв мв Result Qualifier RLMDL Unit D Prepared Dil Fac Analyzed ND 0.50 0.40 mg/L 03/20/12 11:15 ND 0.50 0.40 mg/L 03/20/12 11:15

Lab Sample ID: LCS 440-14274/7 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 14274

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits Chloride 5.00 4 73 mg/L 95 90 - 110 Sulfate 10.0 9.31 mg/L 93 90 - 110

Lab Sample ID: 440-5901-G-1 MS Client Sample ID: Matrix Spike Prep Type: Total/NA

Matrix: Water

Analysis Batch: 14274

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Chloride 47 50.0 88 80 - 120 90.6 mg/L Sulfate 100 80 - 120 140 249 mg/L 110

Lab Sample ID: 440-5901-G-1 MSD

Matrix: Water									Prep	Type: Lot	tal/NA	
Analysis Batch: 14274												
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Δnalvte	Result	Qualifier	habbΔ	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	

				IVISD					MREC.		KFD
Ar	llyte Resul	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Ch	oride 4	,	50.0	90.2		mg/L		87	80 - 120	0	20
Su	ate 14)	100	250		mg/L		111	80 - 120	0	20
Ch	pride 4	,	50.0	90.2	Qualifier	mg/L	в		80 - 1	120	120 0

Method: 314.0 - Perchlorate (IC)

Lab Sample ID: MB 440-14013/5

Mateire Matei

Analysis Batch: 14013	МВ	MB						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac

4.0

0.95

ug/L

Lab Sample ID: LCS 440-14013/4 **Client Sample ID: Lab Control Sample**

ND

Matrix: Water

Perchlorate

Analysis Batch: 14013

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Perchlorate	25.0	24.7		ug/L	 	99	85 - 115	_

Lab Sample ID: 440-5832-1 MS Client Sample ID: Outfall 009 (Composite) Prep Type: Total/NA

Analysis Batch: 14013											
	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Perchlorate	ND		25.0	23.6	-	ug/L		94	80 - 120	-	

QC Sample Results

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES

TestAmerica Job ID: 440-5816-1

Method: 314.0 - Perchlorate (IC) (Continued)

Lab Sample ID: 440-5832-1 MSD

Matrix: Water

Analysis Batch: 14013

Client Sample ID: Outfall 009 (Composite)

Prep Type: Total/NA

Sample Sample Spike MSD MSD %Rec. RPD Result Qualifier Limits RPD Limit Analyte Added Result Qualifier D %Rec Unit Perchlorate 25.0 100 80 - 120 5 20 ND 24.9 ug/L

Method: 1613B - Dioxins/Furans, HRGC/HRMS (1613B)

Lab Sample ID: G2C260000060B

Matrix: Water

OCDF

Analysis Batch: 2086060

Client Sample ID: Method Blank **Prep Type: Total**

Prep Batch: 2086060_P

Analyte	Result	Qualifier	ML	EDL	Unit	D	Prepared	Analyzed	Dil Fac	
2,3,7,8-TCDD	ND		0.000010	0.0000050	ug/L		03/26/12 09:00	03/29/12 04:25	1	
Total TCDD	ND		0.000010	0.0000050	ug/L		03/26/12 09:00	03/29/12 04:25	1	
1,2,3,7,8-PeCDD	ND		0.000050	0.0000057	ug/L		03/26/12 09:00	03/29/12 04:25	1	
Total PeCDD	ND		0.000050	0.0000057	ug/L		03/26/12 09:00	03/29/12 04:25	1	
1,2,3,4,7,8-HxCDD	ND		0.000050	0.0000031	ug/L		03/26/12 09:00	03/29/12 04:25	1	
1,2,3,6,7,8-HxCDD	ND		0.000050	0.0000029	ug/L		03/26/12 09:00	03/29/12 04:25	1	
1,2,3,7,8,9-HxCDD	ND		0.000050	0.0000027	ug/L		03/26/12 09:00	03/29/12 04:25	1	
Total HxCDD	ND		0.000050	0.0000027	ug/L		03/26/12 09:00	03/29/12 04:25	1	
1,2,3,4,6,7,8-HpCDD	0.0000029	JQ	0.000050	0.0000031	ug/L		03/26/12 09:00	03/29/12 04:25	1	
Total HpCDD	0.0000055	JQ	0.000050	0.0000031	ug/L		03/26/12 09:00	03/29/12 04:25	1	
OCDD	0.000023	J	0.00010	0.0000084	ug/L		03/26/12 09:00	03/29/12 04:25	1	
2,3,7,8-TCDF	ND		0.000010	0.0000031	ug/L		03/26/12 09:00	03/29/12 04:25	1	
Total TCDF	ND		0.000010	0.0000031	ug/L		03/26/12 09:00	03/29/12 04:25	1	
1,2,3,7,8-PeCDF	ND		0.000050	0.0000070	ug/L		03/26/12 09:00	03/29/12 04:25	1	
2,3,4,7,8-PeCDF	ND		0.000050	0.0000071	ug/L		03/26/12 09:00	03/29/12 04:25	1	
Total PeCDF	ND		0.000050	0.0000070	ug/L		03/26/12 09:00	03/29/12 04:25	1	
1,2,3,4,7,8-HxCDF	0.0000036	J	0.000050	0.0000027	ug/L		03/26/12 09:00	03/29/12 04:25	1	
1,2,3,6,7,8-HxCDF	ND		0.000050	0.0000024	ug/L		03/26/12 09:00	03/29/12 04:25	1	
2,3,4,6,7,8-HxCDF	ND		0.000050	0.0000024	ug/L		03/26/12 09:00	03/29/12 04:25	1	
1,2,3,7,8,9-HxCDF	ND		0.000050	0.0000032	ug/L		03/26/12 09:00	03/29/12 04:25	1	
Total HxCDF	0.0000069	JQ	0.000050	0.0000024	ug/L		03/26/12 09:00	03/29/12 04:25	1	
1,2,3,4,6,7,8-HpCDF	0.0000022	JQ	0.000050	0.0000031	ug/L		03/26/12 09:00	03/29/12 04:25	1	
1,2,3,4,7,8,9-HpCDF	ND		0.000050	0.0000044	ug/L		03/26/12 09:00	03/29/12 04:25	1	
Total HpCDF	0.0000045	JQ	0.000050	0.0000031	ug/L		03/26/12 09:00	03/29/12 04:25	1	

MB MB

0.0000056 JQ

мв мв

Surrogate %Recovery Qualifier Limits Prepared Dil Fac Analyzed 37CI4-2,3,7,8-TCDD 35 - 197 03/26/12 09:00 03/29/12 04:25 94

0.00010

0.0000063 ug/L

03/26/12 09:00

03/29/12 04:25

Internal Standard	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil F
13C-2,3,7,8-TCDD	52	25 - 164	03/26/12 09:00	03/29/12 04:25	
13C-1,2,3,7,8-PeCDD	49	25 _ 181	03/26/12 09:00	03/29/12 04:25	
13C-1,2,3,4,7,8-HxCDD	52	32 - 141	03/26/12 09:00	03/29/12 04:25	
13C-1,2,3,6,7,8-HxCDD	64	28 - 130	03/26/12 09:00	03/29/12 04:25	
13C-1,2,3,4,6,7,8-HpCDD	59	23 - 140	03/26/12 09:00	03/29/12 04:25	
13C-OCDD	58	17 _ 157	03/26/12 09:00	03/29/12 04:25	
13C-2,3,7,8-TCDF	60	24 - 169	03/26/12 09:00	03/29/12 04:25	
13C-1,2,3,7,8-PeCDF	53	24 - 185	03/26/12 09:00	03/29/12 04:25	
13C-2,3,4,7,8-PeCDF	56	21 - 178	03/26/12 09:00	03/29/12 04:25	

TestAmerica Irvine 4/24/2012

Project/Site: Boeing SSFL NPDES

TestAmerica Job ID: 440-5816-1

Method: 1613B - Dioxins/Furans, HRGC/HRMS (1613B) (Continued)

Lab Sample ID: G2C260000060B

Matrix: Water

Analysis Batch: 2086060

Client Sample ID: Method Blank **Prep Type: Total**

Prep Batch: 2086060_P

il Fac
1
1
1
1
1
1
4

Lab Sample ID: G2C260000060C

Matrix: Water

Analysis Batch: 2086060

Client Sample ID: Lab Control Sample Prep Type: Total

Prep Batch: 2086060_P

ı	Analysis Batch. 2000000							Fiep Dateil. 20000	700_F
l		Spike	LCS	LCS				%Rec.	
l	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
l	2,3,7,8-TCDD	0.000200	0.000227		ug/L		113	67 - 158	
ı	1,2,3,7,8-PeCDD	0.00100	0.00113		ug/L		113	70 - 142	
ı	1,2,3,4,7,8-HxCDD	0.00100	0.00117		ug/L		117	70 - 164	
١	1,2,3,6,7,8-HxCDD	0.00100	0.00114		ug/L		114	76 - 134	
ı	1,2,3,7,8,9-HxCDD	0.00100	0.00133		ug/L		133	64 - 162	
l	1,2,3,4,6,7,8-HpCDD	0.00100	0.00117	В	ug/L		117	70 - 140	
ı	OCDD	0.00200	0.00232	В	ug/L		116	78 - 144	
١	2,3,7,8-TCDF	0.000200	0.000211		ug/L		106	75 - 158	
l	1,2,3,7,8-PeCDF	0.00100	0.00108		ug/L		108	80 - 134	
l	2,3,4,7,8-PeCDF	0.00100	0.00109		ug/L		109	68 - 160	
l	1,2,3,4,7,8-HxCDF	0.00100	0.00106	В	ug/L		106	72 - 134	
ı	1,2,3,6,7,8-HxCDF	0.00100	0.00112		ug/L		112	84 - 130	
l	2,3,4,6,7,8-HxCDF	0.00100	0.00113		ug/L		113	70 - 156	
l	1,2,3,7,8,9-HxCDF	0.00100	0.00110		ug/L		110	78 - 130	
ı	1,2,3,4,6,7,8-HpCDF	0.00100	0.00111	В	ug/L		111	82 - 122	
l	1,2,3,4,7,8,9-HpCDF	0.00100	0.00112		ug/L		112	78 - 138	
١	OCDF	0.00200	0.00242	В	ug/L		121	63 - 170	

LCS LCS

Surrogate %Recovery Qualifier Limits 37CI4-2,3,7,8-TCDD 31 - 191 96

LCS LCS

Internal Standard	%Recovery	Qualifier	Limits
13C-2,3,7,8-TCDD	68		20 - 175
13C-1,2,3,7,8-PeCDD	66		21 - 227
13C-1,2,3,4,7,8-HxCDD	62		21 - 193
13C-1,2,3,6,7,8-HxCDD	78		25 - 163
13C-1,2,3,4,6,7,8-HpCDD	73		26 - 166
13C-OCDD	77		13 - 199
13C-2,3,7,8-TCDF	78		22 - 152
13C-1,2,3,7,8-PeCDF	72		21 - 192
13C-2,3,4,7,8-PeCDF	74		13 - 328
13C-1,2,3,6,7,8-HxCDF	87		21 - 159
13C-2,3,4,6,7,8-HxCDF	88		22 - 176
13C-1,2,3,7,8,9-HxCDF	89		17 - 205
13C-1,2,3,4,6,7,8-HpCDF	82		21 - 158
13C-1,2,3,4,7,8,9-HpCDF	82		20 - 186

TestAmerica Irvine 4/24/2012

Project/Site: Boeing SSFL NPDES

TestAmerica Job ID: 440-5816-1

Method: 1613B - Dioxins/Furans, HRGC/HRMS (1613B) (Continued)

Lab Sample ID: G2C260000060C

Matrix: Water

Analysis Batch: 2086060

Client Sample ID: Lab Control Sample Prep Type: Total

Prep Batch: 2086060 P

LCS LCS

Internal Standard %Recovery Qualifier 13C-1,2,3,4,7,8-HxCDF

79

Limits 19 - 202

Method: 200.7 Rev 4.4 - Metals (ICP)

Lab Sample ID: MB 440-14335/1-A

Matrix: Water

Analysis Batch: 14661

Client Sample ID: Method Blank **Prep Type: Total Recoverable** Prep Batch: 14335

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		10	7.0	ug/L		03/20/12 11:38	03/21/12 11:12	1
Boron	0.0334	J,DX	0.050	0.020	mg/L		03/20/12 11:38	03/21/12 11:12	1
Beryllium	ND		2.0	0.90	ug/L		03/20/12 11:38	03/21/12 11:12	1
Calcium	ND		0.10	0.050	mg/L		03/20/12 11:38	03/21/12 11:12	1
Chromium	ND		5.0	2.0	ug/L		03/20/12 11:38	03/21/12 11:12	1
Iron	ND		0.040	0.015	mg/L		03/20/12 11:38	03/21/12 11:12	1
Magnesium	ND		0.020	0.012	mg/L		03/20/12 11:38	03/21/12 11:12	1
Nickel	ND		10	2.0	ug/L		03/20/12 11:38	03/21/12 11:12	1
Vanadium	ND		10	3.0	ug/L		03/20/12 11:38	03/21/12 11:12	1
Zinc	ND		20	6.0	ug/L		03/20/12 11:38	03/21/12 11:12	1
Silver	ND		10	6.0	ug/L		03/20/12 11:38	03/21/12 11:12	1
Hardness, as CaCO3	ND		0.33	0.17	mg/L		03/20/12 11:38	03/21/12 11:12	1

Lab Sample ID: MB 440-14335/1-A

Matrix: Water

Analysis Batch: 16403

MR MR

Analyte Result Qualifier Aluminum ND

Prep Batch: 14335 Prepared Dil Fac Analyzed 50 40 ug/L

Lab Sample ID: LCS 440-14335/2-A

Matrix: Water

Analysis Batch: 14661

Client Sample ID: Lab Control Sample **Prep Type: Total Recoverable**

Client Sample ID: Method Blank

Prep Type: Total Recoverable

Prep Batch: 14335

7 min. y c. c = a. c. m c c .								
-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	500	509		ug/L		102	85 - 115	
Boron	0.500	0.551		mg/L		110	85 _ 115	
Beryllium	500	514		ug/L		103	85 _ 115	
Calcium	2.50	2.64		mg/L		106	85 - 115	
Chromium	500	539		ug/L		108	85 _ 115	
Iron	0.500	0.519		mg/L		104	85 _ 115	
Magnesium	2.50	2.60		mg/L		104	85 _ 115	
Nickel	500	516		ug/L		103	85 _ 115	
Vanadium	500	520		ug/L		104	85 - 115	
Zinc	500	519		ug/L		104	85 _ 115	
Silver	250	268		ug/L		107	85 _ 115	

TestAmerica Irvine 4/24/2012

Page 36 of 113

Project/Site: Boeing SSFL NPDES

TestAmerica Job ID: 440-5816-1

Method: 200.7 Rev 4.4 - Metals (ICP) (Continued)

Lab Sample ID: LCS 440-14335/2-A **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total Recoverable Analysis Batch: 16403** Prep Batch: 14335 Spike LCS LCS

Added Limits Analyte Result Qualifier %Rec Unit D 85 - 115 500 Aluminum 510 ug/L 102

Lab Sample ID: 440-5626-B-2-B MS Client Sample ID: Matrix Spike **Matrix: Water**

Prep Type: Total Recoverable Analysis Batch: 14661 Prep Batch: 14335

, ,										
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	ND		500	525		ug/L		105	70 - 130	
Boron	0.15	MB	0.500	0.669		mg/L		104	70 - 130	
Beryllium	ND		500	516		ug/L		103	70 - 130	
Calcium	25		2.50	27.9	ВВ	mg/L		103	70 - 130	
Chromium	7.2		500	535		ug/L		106	70 - 130	
Iron	3.1		0.500	3.69	BB	mg/L		109	70 - 130	
Magnesium	3.9		2.50	6.32		mg/L		99	70 - 130	
Nickel	18		500	510		ug/L		98	70 - 130	
Vanadium	3.3	J,DX	500	524		ug/L		104	70 - 130	
Zinc	190		500	698		ug/L		102	70 - 130	
Silver	ND		250	264		ug/L		106	70 - 130	

Lab Sample ID: 440-5626-B-2-B MS Client Sample ID: Matrix Spike **Matrix: Water Prep Type: Total Recoverable Analysis Batch: 16403** Prep Batch: 14335

Sample Sample Spike MS MS %Rec.

Added Analyte Result Qualifier Result Qualifier Unit D %Rec Limits 220 70 - 130 Aluminum 500 760 ug/L 108

Lab Sample ID: 440-5626-B-2-C MSD Client Sample ID: Matrix Spike Duplicate **Matrix: Water Prep Type: Total Recoverable**

Analysis Batch: 14661 Prep Batch: 14335

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	ND		500	520		ug/L		104	70 - 130	1	20
Boron	0.15	MB	0.500	0.673		mg/L		105	70 - 130	1	20
Beryllium	ND		500	523		ug/L		105	70 - 130	1	20
Calcium	25		2.50	28.4	BB	mg/L		121	70 - 130	2	20
Chromium	7.2		500	536		ug/L		106	70 - 130	0	20
Iron	3.1		0.500	3.68	BB	mg/L		108	70 - 130	0	20
Magnesium	3.9		2.50	6.36		mg/L		100	70 - 130	1	20
Nickel	18		500	512		ug/L		99	70 - 130	0	20
Vanadium	3.3	J,DX	500	527		ug/L		105	70 - 130	1	20
Zinc	190		500	699		ug/L		103	70 - 130	0	20
Silver	ND		250	263		ug/L		105	70 - 130	0	20

Lab Sample ID: 440-5626-B-2-C MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Water Prep Type: Total Recoverable

Analysis Batch: 16403 Prep Batch: 14335 Sample Sample Spike MSD MSD %Rec. **RPD** Result Qualifier Limit Analyte Added Result Qualifier Limits Unit D %Rec RPD 500 Aluminum 220 758 ug/L 108 70 - 130 20

> TestAmerica Irvine 4/24/2012

TestAmerica Job ID: 440-5816-1

Client: MWH Americas Inc Project/Site: Boeing SSFL NPDES

Method: 200.7 Rev 4.4 - Metals (ICP) (Continued)

Lab Sample ID: MB 440-14095/1-D

Matrix: Water

Analysis Batch: 15412

Client Sample ID: Method Blank **Prep Type: Dissolved**

Prep Batch: 15170

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		50	40	ug/L		03/23/12 09:50	03/24/12 19:21	1
Arsenic	ND		10	7.0	ug/L		03/23/12 09:50	03/24/12 19:21	1
Boron	0.0272	J,DX	0.050	0.020	mg/L		03/23/12 09:50	03/24/12 19:21	1
Beryllium	ND		2.0	0.90	ug/L		03/23/12 09:50	03/24/12 19:21	1
Calcium	ND		0.10	0.050	mg/L		03/23/12 09:50	03/24/12 19:21	1
Chromium	ND		5.0	2.0	ug/L		03/23/12 09:50	03/24/12 19:21	1
Iron	ND		0.040	0.015	mg/L		03/23/12 09:50	03/24/12 19:21	1
Magnesium	ND		0.020	0.012	mg/L		03/23/12 09:50	03/24/12 19:21	1
Nickel	ND		10	2.0	ug/L		03/23/12 09:50	03/24/12 19:21	1
Vanadium	ND		10	3.0	ug/L		03/23/12 09:50	03/24/12 19:21	1
Zinc	ND		20	6.0	ug/L		03/23/12 09:50	03/24/12 19:21	1
Silver	ND		10	6.0	ug/L		03/23/12 09:50	03/24/12 19:21	1
Hardness, as CaCO3	ND		0.33	0.17	mg/L		03/23/12 09:50	03/24/12 19:21	1

Lab Sample ID: LCS 440-14095/2-D

Matrix: Water

Analysis Batch: 15412

Client Sample ID: Lab Control Sample

Prep Type: Dissolved

Prep Batch: 15170

Analysis Batch: 15412							Ргер ва	tcn: 151/0
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	500	500		ug/L		100	85 - 115	
Arsenic	500	487		ug/L		97	85 _ 115	
Boron	0.500	0.515		mg/L		103	85 _ 115	
Beryllium	500	499		ug/L		100	85 - 115	
Calcium	2.50	2.43		mg/L		97	85 _ 115	
Chromium	500	521		ug/L		104	85 _ 115	
Iron	0.500	0.484		mg/L		97	85 _ 115	
Magnesium	2.50	2.49		mg/L		99	85 _ 115	
Nickel	500	490		ug/L		98	85 - 115	
Vanadium	500	501		ug/L		100	85 _ 115	
Zinc	500	493		ug/L		99	85 - 115	
Silver	250	259		ug/L		104	85 - 115	

Lab Sample ID: 440-5832-1 MS

Matrix: Water

Analysis Batch: 15412

Client Sample ID: Outfall 009 (Composite) **Prep Type: Dissolved**

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	250		500	786		ug/L		108	70 - 130	
Arsenic	ND		500	501		ug/L		100	70 - 130	
Boron	0.027	J,DX	0.500	0.531		mg/L		101	70 - 130	
Beryllium	ND		500	510		ug/L		102	70 - 130	
Calcium	5.6		2.50	7.81		mg/L		90	70 - 130	
Chromium	ND		500	529		ug/L		106	70 - 130	
Iron	0.18		0.500	0.673		mg/L		99	70 - 130	
Magnesium	1.5		2.50	3.92		mg/L		98	70 - 130	
Nickel	ND		500	495		ug/L		99	70 - 130	
Vanadium	ND		500	516		ug/L		103	70 - 130	
Zinc	ND		500	509		ug/L		102	70 - 130	
Silver	ND		250	267		ug/L		107	70 - 130	

TestAmerica Irvine 4/24/2012

Prep Batch: 15170

TestAmerica Job ID: 440-5816-1

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES

Method: 200.7 Rev 4.4 - Metals (ICP) (Continued)

ND

ND

Lab Sample ID: 440-5832-1 MSD

Matrix: Water

Analysis Batch: 15412

Client Sample ID: Outfall 009 (Composite)

107

03/20/12 11:00

70 - 130

Prep Type: Dissolved Prep Batch: 15170

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	250		500	779		ug/L		106	70 - 130	1	20
Arsenic	ND		500	507		ug/L		101	70 - 130	1	20
Boron	0.027	J,DX	0.500	0.537		mg/L		102	70 - 130	1	20
Beryllium	ND		500	516		ug/L		103	70 - 130	1	20
Calcium	5.6		2.50	7.93		mg/L		94	70 - 130	2	20
Chromium	ND		500	533		ug/L		107	70 - 130	1	20
Iron	0.18		0.500	0.672		mg/L		99	70 - 130	0	20
Magnesium	1.5		2.50	3.92		mg/L		98	70 - 130	0	20
Nickel	ND		500	499		ug/L		100	70 - 130	1	20
Vanadium	ND		500	515		ug/L		103	70 - 130	0	20
Zinc	ND		500	510		ua/L		102	70 - 130	0	20

268

250

Method: 200.8 - Metals (ICP/MS)

Lab Sample ID: MB 440-14324/1-A

Matrix: Water

Silver

Analysis Batch: 14540

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

ug/L

Prep Batch: 14324

0

мв мв Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Cadmium ND 1.0 03/20/12 11:00 03/20/12 16:10 0.10 ug/L ND 2.0 03/20/12 11:00 03/20/12 16:10 Copper 0.50 ug/L ND 1.0 03/20/12 11:00 03/20/12 16:10 Lead 0.20 ug/L ND 2.0 03/20/12 11:00 Antimony 0.30 ug/L 03/20/12 16:10 Selenium ND 2.0 0.50 ug/L 03/20/12 11:00 03/20/12 16:10

1.0

0.20 ug/L

Lab Sample ID: LCS 440-14324/2-A

Matrix: Water

Thallium

Analysis Batch: 14540

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

03/20/12 16:10

Prep Batch: 14324

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Cadmium	80.0	80.0		ug/L		100	85 - 115
Copper	80.0	77.3		ug/L		97	85 - 115
Lead	80.0	80.4		ug/L		101	85 - 115
Antimony	80.0	79.9		ug/L		100	85 - 115
Selenium	80.0	81.8		ug/L		102	85 - 115
Thallium	80.0	86.1		ug/L		108	85 - 115

Lab Sample ID: 440-2797-B-1-H MS

Matrix: Water

Analysis Batch: 14540

Client Sample ID: Matrix Spike **Prep Type: Total Recoverable** Prep Batch: 14324

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cadmium	0.18	J,DX	80.0	77.6		ug/L		97	70 - 130	
Copper	5.8		80.0	74.5		ug/L		86	70 - 130	
Lead	1.9		80.0	75.8		ug/L		92	70 - 130	
Antimony	ND		80.0	81.9		ug/L		102	70 - 130	
Selenium	1.8		80.0	82.2		ug/L		101	70 - 130	
Thallium	ND		80.0	72.1		ug/L		90	70 - 130	

TestAmerica Irvine 4/24/2012

Page 39 of 113

Project/Site: Boeing SSFL NPDES

TestAmerica Job ID: 440-5816-1

Method: 200.8 - Metals (ICP/MS) (Continued)

Lab Sample ID: 440-2797-B-1-I MSD

Matrix: Water

Analysis Batch: 14540

Client Sample ID: Matrix Spike Duplicate **Prep Type: Total Recoverable**

Prep Batch: 14324

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Cadmium	0.18	J,DX	80.0	76.6		ug/L		95	70 - 130	1	20
Copper	5.8		80.0	73.0		ug/L		84	70 - 130	2	20
Lead	1.9		80.0	74.3		ug/L		90	70 - 130	2	20
Antimony	ND		80.0	80.5		ug/L		101	70 - 130	2	20
Selenium	1.8		80.0	81.5		ug/L		100	70 - 130	1	20
Thallium	ND		80.0	74.3		ug/L		93	70 - 130	3	20

Lab Sample ID: MB 440-14095/1-E

Matrix: Water

Analysis Batch: 15439

Client Sample ID: Method Blank

Prep Type: Dissolved

Prep Batch: 15171

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		1.0	0.10	ug/L		03/23/12 09:53	03/23/12 22:12	1
Copper	ND		2.0	0.50	ug/L		03/23/12 09:53	03/23/12 22:12	1
Lead	ND		1.0	0.20	ug/L		03/23/12 09:53	03/23/12 22:12	1
Antimony	ND		2.0	0.30	ug/L		03/23/12 09:53	03/23/12 22:12	1
Selenium	ND		2.0	0.50	ug/L		03/23/12 09:53	03/23/12 22:12	1
Thallium	ND		1.0	0.20	ug/L		03/23/12 09:53	03/23/12 22:12	1

Lab Sample ID: LCS 440-14095/2-E

Matrix: Water

Analysis Batch: 15439

Client Sample ID: Lab Control Sample

Prep Type: Dissolved

Prep Batch: 15171

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cadmium	80.0	79.2		ug/L		99	85 - 115	
Copper	80.0	85.4		ug/L		107	85 - 115	
Lead	80.0	79.1		ug/L		99	85 - 115	
Antimony	80.0	83.0		ug/L		104	85 - 115	
Selenium	80.0	82.3		ug/L		103	85 - 115	
Thallium	80.0	80.5		ug/L		101	85 - 115	

Lab Sample ID: 440-5828-D-5-E MS

Matrix: Water

Analysis Batch: 15439

Client Sample ID: Matrix Spike **Prep Type: Dissolved**

Prep Batch: 15171

, ,										
-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cadmium	0.19	J,DX	80.0	79.2		ug/L		99	70 - 130	
Copper	7.2		80.0	93.1		ug/L		107	70 - 130	
Lead	0.24	J,DX	80.0	81.0		ug/L		101	70 - 130	
Antimony	0.33	J,DX	80.0	84.0		ug/L		105	70 - 130	
Selenium	ND		80.0	82.6		ug/L		103	70 - 130	
Thallium	ND		80.0	81.0		ug/L		101	70 - 130	

Lab Sample ID: 440-5828-D-5-F MSD

Matrix: Water

Analysis Batch: 15439

Client Sample ID: Matrix Spike Duplicate **Prep Type: Dissolved**

Prep Batch: 15171

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Cadmium	0.19	J,DX	80.0	77.8		ug/L		97	70 - 130	2	20
Copper	7.2		80.0	94.1		ug/L		109	70 - 130	1	20

TestAmerica Irvine 4/24/2012

Page 40 of 113

Project/Site: Boeing SSFL NPDES

TestAmerica Job ID: 440-5816-1

Method: 200.8 - Metals (ICP/MS) (Continued)

Lab Sample ID: 440-5828-D-5-F MSD

Matrix: Water

Analysis Batch: 15439

Client Sample ID: Matrix Spike Duplicate

Prep Type: Dissolved

Prep Batch: 15171

Alialysis Dalcii. 13433									Fieh	Datell.	13171
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Lead	0.24	J,DX	80.0	79.4		ug/L		99	70 - 130	2	20
Antimony	0.33	J,DX	80.0	83.1		ug/L		103	70 - 130	1	20
Selenium	ND		80.0	82.0		ug/L		102	70 - 130	1	20
Thallium	ND		80.0	81.2		ug/L		101	70 - 130	0	20
	Analyte Lead Antimony Selenium	Analyte Result Lead 0.24 Antimony 0.33 Selenium ND	Analyte Result Qualifier Lead 0.24 J,DX Antimony 0.33 J,DX Selenium ND ND	Analyte Result Qualifier Qualifier Added Added Lead 0.24 J,DX 80.0 Antimony 0.33 J,DX 80.0 Selenium ND 80.0	Analyte Result Qualifier Added Added Action Result Result Added Action MSD Lead 0.24 J,DX 80.0 79.4 Antimony 0.33 J,DX 80.0 83.1 Selenium ND 80.0 82.0	Analyte Result Lead Qualifier Added Added Mesult Result Qualifier Added Added Mesult Qualifier Antimony 0.24 J,DX 80.0 79.4 Selenium ND 80.0 83.1	Analyte Result Qualifier Added Result Qualifier MSD MSD Lead 0.24 J,DX 80.0 79.4 ug/L Antimony 0.33 J,DX 80.0 83.1 ug/L Selenium ND 80.0 82.0 ug/L	Analyte Result Lead Qualifier Out Added Result Qualifier MSD MSD MSD Lead 0.24 J,DX 80.0 79.4 ug/L Antimony 0.33 J,DX 80.0 83.1 ug/L Selenium ND 80.0 82.0 ug/L	Analyte Result Lead Qualifier Qualifier Added Analyte Result Qualifier Qualifier Added Analyte Result Qualifier Qualifier Qualifier Unit Qualifier Qualifier Qualifier Qualifier Unit Qualifier Qualifier Qualifier Unit Qualifier Qualifier Qualifier 99 Antimony 0.33 J,DX 80.0 83.1 ug/L 103 Selenium ND 80.0 82.0 ug/L 102	Analyte Result Qualifier Added Result Qualifier MSD MSD MSD WRec. MRec. Lead 0.24 J,DX 80.0 79.4 ug/L 99 70 - 130 Antimony 0.33 J,DX 80.0 83.1 ug/L 103 70 - 130 Selenium ND 80.0 82.0 ug/L 102 70 - 130	Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Lead 0.24 J,DX 80.0 79.4 ug/L 99 70 - 130 2 Antimony 0.33 J,DX 80.0 83.1 ug/L 103 70 - 130 1 Selenium ND 80.0 82.0 ug/L 102 70 - 130 1

Method: 245.1 - Mercury (CVAA)

Lab Sample ID: MB 440-14384/1-A

Matrix: Water

Analysis Batch: 14706

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Batch: 14384

Prep Type: Total/NA

мв мв Result Qualifier RL MDL Unit Prepared Analyte Analyzed ND 0.20 0.10 ug/L 03/20/12 14:05 03/21/12 13:09 Mercury

Lab Sample ID: LCS 440-14384/2-A

Matrix: Water

Analysis Batch: 14706

Analysis Batch: 14706							Prep Batch: 14384
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits

ts Mercury 8.00 8.26 103 85 - 115 ug/L

Lab Sample ID: 440-5828-B-16-B	MS			Client Sample ID: Matrix Spike
Matrix: Water				Prep Type: Total/NA
Analysis Batch: 14706				Prep Batch: 14384
	Camania Camania	Cuille	MC MC	0/ Doo

Sample Sample Spike %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Mercury ND 8.00 8.22 ug/L 103 70 - 130

Lab Sample ID: 440-5828-B-16-C MSD

Matrix: Water

Analysis Batch: 14706									Pre	p Batch:	14384
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury	ND		8.00	8.24		ug/L		103	70 - 130	0	20

Lab Sample ID: MB 440-14095/1-B

Matrix: Water

Analysis Batch: 14655

Client Sample ID: Method Blank

Client Sample ID: Matrix Spike Duplicate

Prep Type: Dissolved Prep Batch: 14376

Prep Type: Total/NA

MB MB Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 0.20 0.10 ug/L 03/20/12 14:00 03/21/12 12:48 ND

Lab Sample ID: LCS 440-14095/2-B

Matrix: Water

Analyte

Mercury

Analysis Batch: 14655

Client Sample ID: Lab Control Sample **Prep Type: Dissolved** Prep Batch: 14376

LCS LCS %Rec. Spike Added Qualifier Analyte Result Unit %Rec Mercury 8.00 8.10 ug/L 101 85 - 115

20

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES

TestAmerica Job ID: 440-5816-1

Method: 245.1 - Mercury (CVAA) (Continued)

Lab Sample ID: 440-5828-C-2-C MS

Client Sample ID: Matrix Spike **Matrix: Water Prep Type: Dissolved Analysis Batch: 14655** Prep Batch: 14376

Spike MS MS Sample Sample Added Result Qualifier Result Qualifier Limits Analyte Unit D %Rec 0.800 1015 70 - 130 Mercury ND 8.12 ug/L

Lab Sample ID: 440-5828-C-2-D MSD Client Sample ID: Matrix Spike Duplicate **Prep Type: Dissolved**

8.00

Matrix: Water

Analysis Batch: 14655 Prep Batch: 14376 Sample Sample Spike MSD MSD Result Qualifier Analyte Added Result Qualifier Unit %Rec Limits RPD Limit

8.15

ug/L

102

70 - 130

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 16232

Method: 1664A - HEM and SGT-HEM

Lab Sample ID: MB 440-16232/1-A Client Sample ID: Method Blank

Matrix: Water

Mercury

Analysis Batch: 16301

MR MR

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac HEM 5.0 ND 1.4 mg/L 03/29/12 06:37 03/29/12 10:37

Lab Sample ID: LCS 440-16232/2-A

Matrix: Water

Analysis Batch: 16301

Prep Batch: 16232 LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits HEM 20.0 16.2 mg/L 81 78 - 114

Lab Sample ID: LCSD 440-16232/3-A

ND

Matrix: Water

Analysis Batch: 16301

Prep Batch: 16232 Spike LCSD LCSD %Rec. RPD Analyte Added Result Qualifier Limits RPD Limit Unit D %Rec HEM 20.0 15.9 80 mg/L 78 - 114

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 440-15174/1 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 15174

MB MB

Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Total Dissolved Solids ND 10 10 mg/L 03/23/12 10:10

Lab Sample ID: LCS 440-15174/2 Client Sample ID: Lab Control Sample

Matrix: Water

Analysis Batch: 15174

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Total Dissolved Solids 1000 998 100 90 - 110 mg/L

> TestAmerica Irvine 4/24/2012

Prep Type: Total/NA

Project/Site: Boeing SSFL NPDES

TestAmerica Job ID: 440-5816-1

Prep Type: Total/NA

Client Sample ID: Duplicate

Prep Type: Total/NA

Prep Batch: 15221

Method: SM 2540C - Solids, Total Dissolved (TDS) (Continued)

Lab Sample ID: 440-5899-H-2 DU

Matrix: Water

Analysis Batch: 15174

Client Sample ID: Duplicate Prep Type: Total/NA

DU DU RPD Sample Sample Result Qualifier RPD Result Qualifier D Limit Analyte Unit NC **Total Dissolved Solids** ND ND mg/L 10

Method: SM 2540D - Solids, Total Suspended (TSS)

Lab Sample ID: MB 440-14783/1 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 14783

MB MB

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Total Suspended Solids ND 10 10 mg/L 03/21/12 20:39

Lab Sample ID: LCS 440-14783/2 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 14783

LCS LCS %Rec Spike Analyte Added Result Qualifier Unit %Rec Limits Total Suspended Solids 1000 997 mg/L 100 85 - 115

Lab Sample ID: 440-5869-A-1 DU

Matrix: Water

Analysis Batch: 14783

DU DU Sample Sample RPD Result Qualifier Result Qualifier Unit Limit Analyte ND ND Total Suspended Solids mg/L 10

Method: SM 4500 CN E - Cyanide, Total (Low Level)

Lab Sample ID: MB 440-15221/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 15270

MB MB

MDI Unit Analyte Result Qualifier RI Dil Fac Prepared Analyzed 0.0050 Cyanide, Total ND 0.0030 mg/L 03/23/12 14:10 03/23/12 17:36

Lab Sample ID: LCS 440-15221/2-A

Matrix: Water

Analysis Batch: 15270

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 15221

LCS LCS Spike %Rec. Added Result Qualifier Unit D %Rec Limits Cyanide, Total 0.100 0.108 mg/L 108 90 - 110

Lab Sample ID: 440-5832-1 MS Client Sample ID: Outfall 009 (Composite)

Matrix: Water

Analysis Batch: 15270

Prep Batch: 15221 Spike MS MS %Rec. Sample Sample

Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Cyanide, Total ND 0.100 0.107 107 70 - 115 mg/L

Prep Type: Total/NA

Project/Site: Boeing SSFL NPDES

TestAmerica Job ID: 440-5816-1

%Rec

Client Sample ID: Matrix Spike Duplicate

03/27/12 00:00

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 8602 P

Prep Type: Total/NA

03/27/12 22:03

Prep Batch: 15221

Method: SM 4500 CN E - Cyanide, Total (Low Level) (Continued)

Lab Sample ID: 440-5832-1 MSD Client Sample ID: Outfall 009 (Composite) **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 15270

Spike MSD MSD Sample Sample Analyte Result Qualifier Added Result Qualifier %Rec Limits RPD Limit Unit D 0.100 107 0 15 Cyanide, Total ND 0.107 mg/L 70 - 115

Method: SM 4500 F C - Fluoride

Lab Sample ID: MB 440-14334/10 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 14334

MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Fluoride 0.10 0.020 mg/L 03/20/12 07:05 ND

Lab Sample ID: LCS 440-14334/9 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

LCS LCS

Analysis Batch: 14334

Spike Analyte Added Result Qualifier Unit %Rec Limits Fluoride 1.00 1.02 mg/L 102 90 - 110

Lab Sample ID: 440-5197-E-2 MS

Matrix: Water

Analysis Batch: 14334

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits 0.63 1.00 Fluoride 1 61 mg/L 80 - 120

Lab Sample ID: 440-5197-E-2 MSD

Matrix: Water

Analysis Batch: 14334

Sample Sample Spike MSD MSD %Rec. RPD Analyte Result Qualifier Added Result Qualifier Limits RPD Limit Unit D %Rec 98 1.00 Fluoride 0.63 1.62 mg/L 80 - 120 20

Method: Gross Alpha and Beta - Gross Alpha/Beta

-5.81 Ū

Lab Sample ID: S203068-04 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: WATER Analysis Batch: 8602

Blank Blank Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

14

pCi/L

Lab Sample ID: S203068-04 Client Sample ID: Method Blank

Matrix: WATER Analysis Batch: 8602

Tritium

Prep Batch: 8602_P Blank Blank Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac

Uranium, Total 0 Ū 0.007 pCi/L 04/02/12 00:00 04/02/12 12:40

Project/Site: Boeing SSFL NPDES

TestAmerica Job ID: 440-5816-1

Method: Gross Alpha and Beta - Gross Alpha/Beta (Continued)

Lab Sample ID: S203068-04							Client Sa	mple ID: Metho	
Matrix: WATER								Prep Type: T	
Analysis Batch: 8602								Prep Batch:	8602_P
		Blank							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cesium-137	0.54	U	0.78		pCi/L		03/27/12 00:00	04/02/12 12:58	1
Potassium-40	-4.54	U	19		pCi/L		03/27/12 00:00	04/02/12 12:58	1
Lab Sample ID: S203068-04							Client Sa	mple ID: Metho	d Blank
Matrix: WATER								Prep Type: T	otal/NA
Analysis Batch: 8602								Prep Batch:	8602_P
	Blank	Blank							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gross Alpha	-0.295	U	0.33		pCi/L		03/29/12 00:00	04/05/12 13:25	1
Gross Beta	0.532	U	8.0		pCi/L		03/29/12 00:00	04/05/12 13:25	1
Lab Sample ID: S203068-04							Client Sa	mple ID: Metho	d Blank
Matrix: WATER								Prep Type: T	otal/NA
Analysis Batch: 8602								Prep Batch:	8602_P
	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Radium-226	0.149	U	0.27		pCi/L		04/05/12 00:00	04/05/12 14:43	1
Lab Sample ID: S203068-04							Client Sa	mple ID: Metho	d Blank
Matrix: WATER								Prep Type: T	otal/NA
Analysis Batch: 8602								Prep Batch:	8602_P
	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Strontium-90	0.159	U	0.19		pCi/L		04/06/12 00:00	04/06/12 07:23	1
Lab Sample ID: S203068-04							Client Sa	mple ID: Metho	d Blank
Matrix: WATER							Onent oa	Prep Type: T	
muuna Walen								i ich i yhe. i	J.aiii IIA

l	Matrix: WATER								Prep Type: T	otal/NA
l	Analysis Batch: 8602								Prep Batch:	8602_P
l		Blank	Blank							
l	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
L	Radium-228	-0.106	U	0.15		pCi/L		04/06/12 00:00	04/06/12 13:23	1

Lab Sample ID: S203068-03					Client	Sample	D: Lab	Control Sample
Matrix: WATER							Prep	Type: Total/NA
Analysis Batch: 8602							Prep	Batch: 8602_P
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cesium-137	105	155		pCi/L		80	120 - 0	
Cobalt-60	98	128		pCi/L		80	120 - 0	

Lab Sample ID: S203068-03			Client Sample ID: Lab Control Sample					
Matrix: WATER							Prep	Type: Total/NA
Analysis Batch: 8602					Batch: 8602_P			
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Tritium	89	327	J	pCi/L		80	120 - 0	

Matrix: WATER

Lab Sample ID: S203068-03

Project/Site: Boeing SSFL NPDES

TestAmerica Job ID: 440-5816-1

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Method: Gross Alpha and Beta - Gross Alpha/Beta (Continued)

Lab Sample ID: S203068-03 Matrix: WATER Analysis Batch: 8602	Matrix: WATER Analysis Batch: 8602							Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 8602_P				
	Spike	LCS	LCS				%Rec.	_				
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits					
Uranium, Total	108	67.7		pCi/L		80	120 - 0					
Lab Sample ID: S203068-03					Client	t Sample	e ID: Lab C	Control Sample				

Analysis Batch: 8602							Prep	Batch: 80	602_F
	Spike	LCS	LCS				%Rec.		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gross Alpha	116	42.9		pCi/L		70	130 - 0		
Gross Beta	99	33.5		pCi/L		70	130 - 0		

Lab Sample ID: S203068-03						Client	Sample	e ID: Lab	Control Sample	е
Matrix: WATER								Prep	Type: Total/NA	A
Analysis Batch: 8602						Prep Batch: 8602				
		Spike	LCS	LCS				%Rec.		
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits		
Radium-226	 	100	50.2		pCi/L		80	120 - 0		_

Matrix: WATER							Prep	Type: Total/NA
Analysis Batch: 8602							Prep	Batch: 8602_P
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Strontium-90	97	8.25		pCi/L		80	120 - 0	

Lab Sample ID: S203068-03					Client	t Sample	e ID: Lab (Control Sample
Matrix: WATER							Prep	Type: Total/NA
Analysis Batch: 8602							Prep	Batch: 8602_P
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Radium-228	99	5.28		pCi/L		60	140 - 0	

Lab Sample ID: S203068-05					Client Sar	nple ID: OU	TFALL 009 COMPOS	ITE DU
Matrix: WATER							Prep Type: To	otal/NA
Analysis Batch: 8602							Prep Batch:	8602_P
	Sample	Sample	Duplicate	Duplicate				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Tritium	-34.6	U	-74.5	U	pCi/L			

Lab Sample ID: S203068-05	Client Sample ID: OUTFALL 009 COMPOSITE I									
Matrix: WATER							Prep Type: To	otal/NA		
Analysis Batch: 8602							Prep Batch:	8602_P		
-	Sample	Sample	Duplicate	Duplicate				RPD		
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit		
Cesium-137	-1.39	U	 0.484	U	pCi/L					
Potassium-40	-7.99	U	3.79	U	pCi/L					

TestAmerica Irvine 4/24/2012

TestAmerica Job ID: 440-5816-1

Project/Site: Boeing SSFL NPDES

Radium-228

Client: MWH Americas Inc

Method: Gross Alpha and Beta - Gross Alpha/Beta (Continued)

-0.055 U

Lab Sample ID: S203068-05		Client Sample ID: OUTFALL 009 COMPOSITE DU
Matrix: WATER		Prep Type: Total/NA
Analysis Batch: 8602		Prep Batch: 8602_P
	Sample Sample	Duplicate Duplicate RPD

		p.:0	2 4 10 11 10 11 10					
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPI) Limit
Uranium, Total	0.117	J	0.109	J	pCi/L			

Lab Sample ID: S203068-05 Client Sample ID: OUTFALL 009 COMPOSITE DU **Matrix: WATER** Prep Type: Total/NA Prep Batch: 8602 P **Analysis Batch: 8602**

7 manyolo Batom oool							. Top Batom		·
	Sample	Sample	Duplicate	Duplicate					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPI	D	Limit
Gross Alpha	1.37	J	1.52	J	pCi/L				
Gross Beta	2.46	J	2.99	J	pCi/L				

Lab Sample ID: S203068-05		Client Sample ID: OUTFALL 009 COMPOSITE DU	ı
Matrix: WATER		Prep Type: Total/NA	Ų.
Analysis Batch: 8602		Prep Batch: 8602_F)
	Sample Sample	Duplicate Duplicate RPD)

	Sample	Sample	Duplicate	Duplicate				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Radium-226	0.214	U	0.267	U	pCi/L			

Lab Sample ID: S203068-05				C	lient Sam	ple ID: OU	TFALL 009 COMPOSI	TE DU
Matrix: WATER							Prep Type: To	tal/NA
Analysis Batch: 8602							Prep Batch: 8	602_P
	Sample	Sample	Duplicate	Duplicate				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Strontium-90	-0.107	U	-0.137	U	pCi/L			

Stromatin-30	-0.107	0	-0.137	U	POIL			
Lab Sample ID: S203068-05					Client Samp	le ID: OUTFAL	L 009 COMPOSIT	ΓE DU
Matrix: WATER							Prep Type: Tot	tal/NA
Analysis Batch: 8602							Prep Batch: 80	602_P
	Sample	Sample	Duplicate	Duplicate				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit

0.022 U

pCi/L

TestAmerica Job ID: 440-5816-1

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES

GC/MS VOA

Analysis Batch: 14240

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-5182-A-1 MS	Matrix Spike	Total/NA	Water	624	
440-5182-A-1 MSD	Matrix Spike Duplicate	Total/NA	Water	624	
440-5816-3	Outfall 009	Total/NA	Water	624	
440-5816-4	Trip Blanks	Total/NA	Water	624	
LCS 440-14240/5	Lab Control Sample	Total/NA	Water	624	
MB 440-14240/4	Method Blank	Total/NA	Water	624	

Analysis Batch: 15688

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-5816-3	Outfall 009	Total/NA	Water	624	
440-5816-4	Trip Blanks	Total/NA	Water	624	
440-5944-B-2 MS	Matrix Spike	Total/NA	Water	624	
440-5944-B-2 MSD	Matrix Spike Duplicate	Total/NA	Water	624	
LCS 440-15688/5	Lab Control Sample	Total/NA	Water	624	
MB 440-15688/4	Method Blank	Total/NA	Water	624	

GC/MS Semi VOA

Prep Batch: 14160

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-5832-1	Outfall 009 (Composite)	Total/NA	Water	525.2	
LCS 440-14160/2-A	Lab Control Sample	Total/NA	Water	525.2	
LCSD 440-14160/3-A	Lab Control Sample Dup	Total/NA	Water	525.2	
MB 440-14160/1-A	Method Blank	Total/NA	Water	525.2	

Analysis Batch: 14340

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-5832-1	Outfall 009 (Composite)	Total/NA	Water	525.2	14160
LCS 440-14160/2-A	Lab Control Sample	Total/NA	Water	525.2	14160
LCSD 440-14160/3-A	Lab Control Sample Dup	Total/NA	Water	525.2	14160
MB 440-14160/1-A	Method Blank	Total/NA	Water	525.2	14160

Prep Batch: 14733

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-5832-1	Outfall 009 (Composite)	Total/NA	Water	625	
LCS 440-14733/2-A	Lab Control Sample	Total/NA	Water	625	
LCSD 440-14733/3-A	Lab Control Sample Dup	Total/NA	Water	625	
MB 440-14733/1-A	Method Blank	Total/NA	Water	625	

Analysis Batch: 15425

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-5832-1	Outfall 009 (Composite)	Total/NA	Water	625	14733
LCS 440-14733/2-A	Lab Control Sample	Total/NA	Water	625	14733
LCSD 440-14733/3-A	Lab Control Sample Dup	Total/NA	Water	625	14733
MB 440-14733/1-A	Method Blank	Total/NA	Water	625	14733

GC Semi VOA

Prep Batch: 14103

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-5832-1	Outfall 009 (Composite)	Total/NA	Water	608	
LCS 440-14103/2-A	Lab Control Sample	Total/NA	Water	608	

Client: MWH Americas Inc TestAmerica Job ID: 440-5816-1

Project/Site: Boeing SSFL NPDES

GC Semi VOA (Continued)

Prep Batch: 14103 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 440-14103/4-A	Lab Control Sample	Total/NA	Water	608	
LCSD 440-14103/3-A	Lab Control Sample Dup	Total/NA	Water	608	
LCSD 440-14103/5-A	Lab Control Sample Dup	Total/NA	Water	608	
MB 440-14103/1-A	Method Blank	Total/NA	Water	608	

Analysis Batch: 14342

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-5832-1	Outfall 009 (Composite)	Total/NA	Water	608	14103
LCS 440-14103/2-A	Lab Control Sample	Total/NA	Water	608	14103
LCSD 440-14103/3-A	Lab Control Sample Dup	Total/NA	Water	608	14103
MB 440-14103/1-A	Method Blank	Total/NA	Water	608	14103

Analysis Batch: 14346

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-5832-1	Outfall 009 (Composite)	Total/NA	Water	608	14103
LCS 440-14103/4-A	Lab Control Sample	Total/NA	Water	608	14103
LCSD 440-14103/5-A	Lab Control Sample Dup	Total/NA	Water	608	14103
MB 440-14103/1-A	Method Blank	Total/NA	Water	608	14103

HPLC/IC

Analysis Batch: 13936

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-5816-3	Outfall 009	Total/NA	Water	218.6	
440-5816-3 MS	Outfall 009	Total/NA	Water	218.6	
440-5816-3 MSD	Outfall 009	Total/NA	Water	218.6	
LCS 440-13936/2	Lab Control Sample	Total/NA	Water	218.6	
MB 440-13936/3	Method Blank	Total/NA	Water	218.6	

Analysis Batch: 14013

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-5832-1	Outfall 009 (Composite)	Total/NA	Water	314.0	
440-5832-1 MS	Outfall 009 (Composite)	Total/NA	Water	314.0	
440-5832-1 MSD	Outfall 009 (Composite)	Total/NA	Water	314.0	
LCS 440-14013/4	Lab Control Sample	Total/NA	Water	314.0	
MB 440-14013/5	Method Blank	Total/NA	Water	314.0	

Analysis Batch: 14023

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-5832-1	Outfall 009 (Composite)	Total/NA	Water	300.0	
440-5832-1 MS	Outfall 009 (Composite)	Total/NA	Water	300.0	
440-5832-1 MSD	Outfall 009 (Composite)	Total/NA	Water	300.0	
LCS 440-14023/2	Lab Control Sample	Total/NA	Water	300.0	
MB 440-14023/3	Method Blank	Total/NA	Water	300.0	

Analysis Batch: 14274

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-5832-1	Outfall 009 (Composite)	Total/NA	Water	300.0	
440-5901-G-1 MS	Matrix Spike	Total/NA	Water	300.0	
440-5901-G-1 MSD	Matrix Spike Duplicate	Total/NA	Water	300.0	
LCS 440-14274/7	Lab Control Sample	Total/NA	Water	300.0	
MB 440-14274/3	Method Blank	Total/NA	Water	300.0	
<u> </u>					

5

4

6

8

9

12

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES

TestAmerica Job ID: 440-5816-1

Specialty Organics

Analysis Batch: 2086060

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-5832-1	Outfall 009 (Composite)	Total	Water	1613B	
G2C260000060B	Method Blank	Total	Water	1613B	
G2C260000060C	Lab Control Sample	Total	Water	1613B	

Prep Batch: 2086060_P

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-5832-1	Outfall 009 (Composite)	Total	Water	3542	
G2C260000060B	Method Blank	Total	Water	3542	
G2C260000060C	Lab Control Sample	Total	Water	3542	

Metals

Prep Batch: 14324

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-2797-B-1-H MS	Matrix Spike	Total Recoverable	Water	200.2	
440-2797-B-1-I MSD	Matrix Spike Duplicate	Total Recoverable	Water	200.2	
440-5832-1	Outfall 009 (Composite)	Total Recoverable	Water	200.2	
LCS 440-14324/2-A	Lab Control Sample	Total Recoverable	Water	200.2	
MB 440-14324/1-A	Method Blank	Total Recoverable	Water	200.2	

Prep Batch: 14335

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-5626-B-2-B MS	Matrix Spike	Total Recoverable	Water	200.2	
440-5626-B-2-C MSD	Matrix Spike Duplicate	Total Recoverable	Water	200.2	
440-5832-1	Outfall 009 (Composite)	Total Recoverable	Water	200.2	
LCS 440-14335/2-A	Lab Control Sample	Total Recoverable	Water	200.2	
MB 440-14335/1-A	Method Blank	Total Recoverable	Water	200.2	

Prep Batch: 14376

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-5828-C-2-C MS	Matrix Spike	Dissolved	Water	245.1	
440-5828-C-2-D MSD	Matrix Spike Duplicate	Dissolved	Water	245.1	
440-5832-1	Outfall 009 (Composite)	Dissolved	Water	245.1	
LCS 440-14095/2-B	Lab Control Sample	Dissolved	Water	245.1	
MB 440-14095/1-B	Method Blank	Dissolved	Water	245.1	

Prep Batch: 14384

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-5828-B-16-B MS	Matrix Spike	Total/NA	Water	245.1	
440-5828-B-16-C MSD	Matrix Spike Duplicate	Total/NA	Water	245.1	
440-5832-1	Outfall 009 (Composite)	Total/NA	Water	245.1	
LCS 440-14384/2-A	Lab Control Sample	Total/NA	Water	245.1	
MB 440-14384/1-A	Method Blank	Total/NA	Water	245.1	

Analysis Batch: 14540

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-2797-B-1-H MS	Matrix Spike	Total Recoverable	Water	200.8	14324
440-2797-B-1-I MSD	Matrix Spike Duplicate	Total Recoverable	Water	200.8	14324
440-5832-1	Outfall 009 (Composite)	Total Recoverable	Water	200.8	14324
LCS 440-14324/2-A	Lab Control Sample	Total Recoverable	Water	200.8	14324
MB 440-14324/1-A	Method Blank	Total Recoverable	Water	200.8	14324

9

5

7

10

15

Client: MWH Americas Inc TestAmerica Job ID: 440-5816-1

Project/Site: Boeing SSFL NPDES

Metals (Continued)

Anal	ysis	Batc	h: '	14655
------	------	-------------	------	-------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-5828-C-2-C MS	Matrix Spike	Dissolved	Water	245.1	14376
440-5828-C-2-D MSD	Matrix Spike Duplicate	Dissolved	Water	245.1	14376
440-5832-1	Outfall 009 (Composite)	Dissolved	Water	245.1	14376
LCS 440-14095/2-B	Lab Control Sample	Dissolved	Water	245.1	14376
MB 440-14095/1-B	Method Blank	Dissolved	Water	245.1	14376

Analysis Batch: 14661

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-5626-B-2-B MS	Matrix Spike	Total Recoverable	Water	200.7 Rev 4.4	14335
440-5626-B-2-C MSD	Matrix Spike Duplicate	Total Recoverable	Water	200.7 Rev 4.4	14335
440-5832-1	Outfall 009 (Composite)	Total Recoverable	Water	200.7 Rev 4.4	14335
LCS 440-14335/2-A	Lab Control Sample	Total Recoverable	Water	200.7 Rev 4.4	14335
MB 440-14335/1-A	Method Blank	Total Recoverable	Water	200.7 Rev 4.4	14335

Analysis Batch: 14706

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-5828-B-16-B MS	Matrix Spike	Total/NA	Water	245.1	14384
440-5828-B-16-C MSD	Matrix Spike Duplicate	Total/NA	Water	245.1	14384
440-5832-1	Outfall 009 (Composite)	Total/NA	Water	245.1	14384
LCS 440-14384/2-A	Lab Control Sample	Total/NA	Water	245.1	14384
MB 440-14384/1-A	Method Blank	Total/NA	Water	245.1	14384

Prep Batch: 15170

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-5832-1	Outfall 009 (Composite)	Dissolved	Water	200.2	
440-5832-1 MS	Outfall 009 (Composite)	Dissolved	Water	200.2	
440-5832-1 MSD	Outfall 009 (Composite)	Dissolved	Water	200.2	
LCS 440-14095/2-D	Lab Control Sample	Dissolved	Water	200.2	
MB 440-14095/1-D	Method Blank	Dissolved	Water	200.2	

Prep Batch: 15171

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-5828-D-5-E MS	Matrix Spike	Dissolved	Water	200.2	
440-5828-D-5-F MSD	Matrix Spike Duplicate	Dissolved	Water	200.2	
440-5832-1	Outfall 009 (Composite)	Dissolved	Water	200.2	
LCS 440-14095/2-E	Lab Control Sample	Dissolved	Water	200.2	
MB 440-14095/1-E	Method Blank	Dissolved	Water	200.2	

Analysis Batch: 15412

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-5832-1	Outfall 009 (Composite)	Dissolved	Water	200.7 Rev 4.4	15170
440-5832-1 MS	Outfall 009 (Composite)	Dissolved	Water	200.7 Rev 4.4	15170
440-5832-1 MSD	Outfall 009 (Composite)	Dissolved	Water	200.7 Rev 4.4	15170
LCS 440-14095/2-D	Lab Control Sample	Dissolved	Water	200.7 Rev 4.4	15170
MB 440-14095/1-D	Method Blank	Dissolved	Water	200.7 Rev 4.4	15170

Analysis Batch: 15439

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-5828-D-5-E MS	Matrix Spike	Dissolved	Water	200.8	15171
440-5828-D-5-F MSD	Matrix Spike Duplicate	Dissolved	Water	200.8	15171
440-5832-1	Outfall 009 (Composite)	Dissolved	Water	200.8	15171
LCS 440-14095/2-E	Lab Control Sample	Dissolved	Water	200.8	15171

9

3

4

5

_

8

9

10

12

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES

TestAmerica Job ID: 440-5816-1

Metals (Continued)

Analysis Batch: 15439 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 440-14095/1-E	Method Blank	Dissolved	Water	200.8	15171

Analysis Batch: 16403

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-5626-B-2-B MS	Matrix Spike	Total Recoverable	Water	200.7 Rev 4.4	14335
440-5626-B-2-C MSD	Matrix Spike Duplicate	Total Recoverable	Water	200.7 Rev 4.4	14335
440-5832-1	Outfall 009 (Composite)	Total Recoverable	Water	200.7 Rev 4.4	14335
LCS 440-14335/2-A	Lab Control Sample	Total Recoverable	Water	200.7 Rev 4.4	14335
MB 440-14335/1-A	Method Blank	Total Recoverable	Water	200.7 Rev 4.4	14335

General Chemistry

Analysis Batch: 14334

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-5197-E-2 MS	Matrix Spike	Total/NA	Water	SM 4500 F C	
440-5197-E-2 MSD	Matrix Spike Duplicate	Total/NA	Water	SM 4500 F C	
440-5832-1	Outfall 009 (Composite)	Total/NA	Water	SM 4500 F C	
LCS 440-14334/9	Lab Control Sample	Total/NA	Water	SM 4500 F C	
MB 440-14334/10	Method Blank	Total/NA	Water	SM 4500 F C	

Analysis Batch: 14783

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-5832-1	Outfall 009 (Composite)	Total/NA	Water	SM 2540D	
440-5869-A-1 DU	Duplicate	Total/NA	Water	SM 2540D	
LCS 440-14783/2	Lab Control Sample	Total/NA	Water	SM 2540D	
MB 440-14783/1	Method Blank	Total/NA	Water	SM 2540D	

Analysis Batch: 15174

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-5832-1	Outfall 009 (Composite)	Total/NA	Water	SM 2540C	
440-5899-H-2 DU	Duplicate	Total/NA	Water	SM 2540C	
LCS 440-15174/2	Lab Control Sample	Total/NA	Water	SM 2540C	
MB 440-15174/1	Method Blank	Total/NA	Water	SM 2540C	

Prep Batch: 15221

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-5832-1	Outfall 009 (Composite)	Total/NA	Water	Distill/CN	
440-5832-1 MS	Outfall 009 (Composite)	Total/NA	Water	Distill/CN	
440-5832-1 MSD	Outfall 009 (Composite)	Total/NA	Water	Distill/CN	
LCS 440-15221/2-A	Lab Control Sample	Total/NA	Water	Distill/CN	
MB 440-15221/1-A	Method Blank	Total/NA	Water	Distill/CN	

Analysis Batch: 15270

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-5832-1	Outfall 009 (Composite)	Total/NA	Water	SM 4500 CN E	15221
440-5832-1 MS	Outfall 009 (Composite)	Total/NA	Water	SM 4500 CN E	15221
440-5832-1 MSD	Outfall 009 (Composite)	Total/NA	Water	SM 4500 CN E	15221
LCS 440-15221/2-A	Lab Control Sample	Total/NA	Water	SM 4500 CN E	15221
MB 440-15221/1-A	Method Blank	Total/NA	Water	SM 4500 CN E	15221

3

4

5

6

Q

Q

10

12

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES

TestAmerica Job ID: 440-5816-1

General Chemistry (Continued)

Prep Batch: 16232

Lab Sample	D Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-5816-3	Outfall 009	Total/NA	Water	1664A	
LCS 440-162	32/2-A Lab Control Sample	Total/NA	Water	1664A	
LCSD 440-16	232/3-A Lab Control Sample Dup	Total/NA	Water	1664A	
MB 440-1623	2/1-A Method Blank	Total/NA	Water	1664A	

Analysis Batch: 16301

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-5816-3	Outfall 009	Total/NA	Water	1664A	16232
LCS 440-16232/2-A	Lab Control Sample	Total/NA	Water	1664A	16232
LCSD 440-16232/3-A	Lab Control Sample Dup	Total/NA	Water	1664A	16232
MB 440-16232/1-A	Method Blank	Total/NA	Water	1664A	16232

Biology

Analysis Batch: 13970

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-5816-3	Outfall 009	Total/NA	Water	SM 9221E	

Analysis Batch: 13971

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-5816-3	Outfall 009	Total/NA	Water	SM 9221F	

Subcontract

Analysis Batch: 8602

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-5832-1	Outfall 009 (Composite)	Total/NA	Water	Gamma Spec	8602_P
				K-40 CS-137	
440-5832-1	Outfall 009 (Composite)	Total/NA	Water	Gross Alpha	8602_P
				and Beta	
440-5832-1	Outfall 009 (Composite)	Total/NA	Water	Radium 226	8602_P
440-5832-1	Outfall 009 (Composite)	Total/NA	Water	Radium 228	8602_P
440-5832-1	Outfall 009 (Composite)	Total/NA	Water	Strontium 90	8602_P
440-5832-1	Outfall 009 (Composite)	Total/NA	Water	Tritium	8602_P
440-5832-1	Outfall 009 (Composite)	Total/NA	Water	Uranium,	8602_P
				Combined	
440-5832-3	Trip Blank	Total/NA	Water	Gamma Spec	8602_P
				K-40 CS-137	
440-5832-3	Trip Blank	Total/NA	Water	Gross Alpha	8602_P
				and Beta	
440-5832-3	Trip Blank	Total/NA	Water	Radium 226	8602_P
440-5832-3	Trip Blank	Total/NA	Water	Radium 228	8602_P
440-5832-3	Trip Blank	Total/NA	Water	Strontium 90	8602_P
440-5832-3	Trip Blank	Total/NA	Water	Uranium,	8602_P
				Combined	
S203068-03	Lab Control Sample	Total/NA	WATER	Gross Alpha	8602_P
				and Beta	
S203068-04	Method Blank	Total/NA	WATER	Gross Alpha	8602_P
				and Beta	
S203068-05	OUTFALL 009 COMPOSITE DU	Total/NA	WATER	Gross Alpha	8602_P
				and Beta	

4

6

10

11

12

Client: MWH Americas Inc TestAmerica Job ID: 440-5816-1

Project/Site: Boeing SSFL NPDES

Subcontract (Continued)

Analysis Batch: 149949

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-5832-1	Outfall 009 (Composite)	Total/NA	Water	Asbestos	149949_P
BLANK	BLANK	Total/NA	WATER	Asbestos	149949_P

Prep Batch: 8602_P

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-5832-1	Outfall 009 (Composite)	Total/NA	Water	General Prep	
440-5832-3	Trip Blank	Total/NA	Water	General Prep	
S203068-03	Lab Control Sample	Total/NA	WATER	General Prep	
S203068-04	Method Blank	Total/NA	WATER	General Prep	
S203068-05	OUTFALL 009 COMPOSITE DU	Total/NA	WATER	General Prep	

Prep Batch: 149949_P

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-5832-1	Outfall 009 (Composite)	Total/NA	Water	NA	
BLANK	BLANK	Total/NA	WATER	NA	

2

- 3

__

5

6

8

9

10

11

12

Definitions/Glossary

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES

TestAmerica Job ID: 440-5816-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
LN	MS and/or MSD below acceptance limits. See Blank Spike (LCS)
AY	Matrix Interference suspected

DIOXIN

Qualifier	Qualifier Description
J	Estimated result. Result is less than the reporting limit.
Q	Estimated maximum possible concentration (EMPC).
В	Method blank contamination. The associated method blank contains the target analyte at a reportable level.
Metals	

Qualifier	Qualifier Description
J,DX	Estimated value; value < lowest standard (MQL), but >than MDL
MB	Analyte present in the method blank
EY	Result exceeds normal dynamic range; reported as a min. est.
BB	Sample > 4X spike concentration

Subcontract

Qualifier	Qualifier Description
U	The RESULT is less than the MDA (Minimum Detectable Activity). If the MDA is blank, the ERROR is used as the limit.
J	The RESULT is less than the RDL (Required Detection Limit) and no U qualifier is assigned.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
\tilde{\	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample
EDL	Estimated Detection Limit
EPA	United States Environmental Protection Agency
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RL	Reporting Limit
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

TestAmerica Irvine 4/24/2012

TestAmerica Job ID: 440-5816-1

Client: MWH Americas Inc

Project/Site: Boeing SSFL NPDES

aboratory	Authority	Program	EPA Region	Certification ID
estAmerica Irvine	Arizona	State Program	9	AZ0671
estAmerica Irvine	California	LA Cty Sanitation Districts	9	10256
estAmerica Irvine	California	NELAC	9	1108CA
estAmerica Irvine	California	State Program	9	2706
estAmerica Irvine	Guam	State Program	9	Cert. No. 12.002r
estAmerica Irvine	Hawaii	State Program	9	N/A
estAmerica Irvine	Nevada	State Program	9	CA015312007A
estAmerica Irvine	New Mexico	State Program	6	N/A
estAmerica Irvine	Northern Mariana Islands	State Program	9	MP0002
estAmerica Irvine	Oregon	NELAC	10	4005
estAmerica Irvine	USDA	Federal		P330-09-00080
estAmerica West Sacramento	A2LA	DoD ELAP		2928-01
estAmerica West Sacramento	Alaska (UST)	State Program	10	UST-055
estAmerica West Sacramento	Arizona	State Program	9	AZ0708
estAmerica West Sacramento	Arkansas DEQ	State Program	6	88-0691
estAmerica West Sacramento	California	NELAC	9	1119CA
estAmerica West Sacramento	California	NELAC Primary AB	9	MP0007
estAmerica West Sacramento	Colorado	State Program	8	N/A
estAmerica West Sacramento	Connecticut	State Program	1	PH-0691
estAmerica West Sacramento	Florida	NELAC	4	E87570
estAmerica West Sacramento	Georgia	State Program	4	960
estAmerica West Sacramento	Guam	State Program	9	N/A
estAmerica West Sacramento	Hawaii	State Program	9	N/A
estAmerica West Sacramento	Illinois	NELAC	5	200060
estAmerica West Sacramento	Kansas	NELAC	7	E-10375
estAmerica West Sacramento	Louisiana	NELAC	6	30612
estAmerica West Sacramento	Michigan	State Program	5	9947
estAmerica West Sacramento	Nevada	State Program	9	CA44
estAmerica West Sacramento	New Jersey	NELAC	2	CA005
estAmerica West Sacramento	New Mexico	State Program	6	N/A
estAmerica West Sacramento	New York	NELAC	2	11666
estAmerica West Sacramento	Northern Mariana Islands	State Program	9	MP0007
estAmerica West Sacramento	Oregon	NELAC	10	CA200005
estAmerica West Sacramento	Pennsylvania	NELAC	3	68-01272
estAmerica West Sacramento	South Carolina	State Program	4	87014
estAmerica West Sacramento	Texas	NELAC	6	T104704399-08-TX
estAmerica West Sacramento	US Fish & Wildlife	Federal		LE148388-0
estAmerica West Sacramento	USDA	Federal		P330-09-00055
estAmerica West Sacramento	Utah	NELAC	8	QUAN1
estAmerica West Sacramento	Virginia	State Program	3	178
estAmerica West Sacramento	Washington	State Program	10	C581
estAmerica West Sacramento	West Virginia	State Program	3	9930C
estAmerica West Sacramento	West Virginia DEP	State Program	3	334
estAmerica West Sacramento	Wisconsin	State Program	5	998204680
estAmerica West Sacramento	Wyoming	State Program	8	8TMS-Q

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

3

4

6

8

9

10

15

LABORATORY REPORT

Date: March 22, 2012

Client: Test America - Irvine

17461 Derian Ave., Suite 100

Irvine, CA 92614 Attn: Debby Wilson

"dedicated to providing quality aquatic toxicity testing"

4350 Transport Street, Unit 107 Ventura, CA 93003 (805) 650-0546 FAX (805) 650-0756 CA DOHS ELAP Cert. No.: 1775

Laboratory No.: A-12031801-001 Job No.: 440-5816-1

Sample ID.: Outfall 009 (440-5816-3)

Sample Control: The sample was received by ATL in a chilled state, within the recommended hold

time and with the chain of custody record attached.

Date Sampled: 03/17/12 Date Received: 03/18/12 Temp. Received: 3.6°C Chlorine (TRC): 0.0 mg/l

Date Tested: 03/18/12 to 03/22/12

Sample Analysis: The following analyses were performed on your sample:

Fathead Minnow 96hr Percent Survival Bioassay (EPA Method 2000.0).

Attached are the test data generated from the analysis of your sample. All testing was conducted under the direct supervision of Joseph A. LeMay. Daily test readings were taken by Joseph A. LeMay (initialed: JAL) and Jacob LeMay (initialed: J).

Result Summary:

Sample ID. Results

Outfall 009 (404-5816-3) 100% Survival (TUa = 0.0)

Quality Control: Reviewed and approved by:

Laboratory Directo

FATHEAD MINNOW PERCENT SURVIVAL TEST EPA Method 2000.0

Lab No.: A-12031801-001

Client/ID: TestAmerica Outfall 009 (440-5816-3)

Start Date: 03/18/2012

TEST SUMMARY

Species: Pimephales promelas.
Age: ______ (1-14) days.
Regulations: NPDES.

Test solution volume: 250 ml.

Feeding: prior to renewal at 48 hrs. Number of replicates: 4.

Control water: Moderately hard reconstituted water.

Photoperiod: 16/8 hrs light/dark.

Source: In-laboratory Culture. Test type: Static-Renewal.

Test Protocol: EPA-821-R-02-012. Endpoints: Percent Survival at 96 hrs.

Test chamber: 600 ml beakers. Temperature: 20 +/- 1°C. Number of fish per chamber: 10.

QA/QC No.: RT-120301.

TEST DATA

			IESI	DATA					
		°C	DO			# [Dead		Analyst & Time
			DO	pН	A	В	С	D	of Readings
INITIAL	Control	14.2	8.1	8.1	0	0	U	0	2
INITIAL	100%	20.2	10.2	7.1	0	0	0	0	1300
24 11-	Control	19.3	8.2	7-9	0	0	0	0	pe
24 Hr	100%	19.3	84	7-6	0	0	0	0	1330
40.11	Control	20.0	7.8	8.1	0	0	0	0	2
48 Hr	100%	19.7	7.4	7.7	0	0	0	0	1300
D 1	Control	19.5	8.0	8.2	0	0	0	0	2
Renewal	100%	20.1	9.5	7.2	0	0	0	0	1300
70 II	Control	19-2	7-8	8.0	0	0	0	0	Me
72 Hr	100%	19-2	7-6	7-8	0	0	0	0	1300
0611	Control	19.5	7. 9	7.9	0	0	0	Ô	1
96 Hr	100%	19.5	8.0	7.5	0	0	0	0	1230

Comments:

Sample as received: Chlorine: 0.0 mg/l; pH: 7.1; Conductivity: 49 umho; Temp: 3.6°C; DO: 2 mg/l; Alkalinity: 9 mg/l; Hardness: 3 mg/l; NH₃-N: 0.3 mg/l.

Sample aerated moderately (approx. 500 ml/min) to raise or lower DO? Yes / No. Control: Alkalinity: 74 mg/l; Hardness: 94 mg/l; Conductivity: >08 umho.

Test solution aerated (not to exceed 100 bubbles/min) to maintain DO >4.0 mg/l? Yes / No.

Sample used for renewal is the original sample kept at 0-6°C with minimal headspace.

Dissolved Oxygen (DO) readings in mg/l O2.

RESULTS

Chain of Custody Record

A STATE OF THE STA	3-6	Cooler Temperature(s) °C and Other Remarks:	Coole					Custody Seals Intact: Custody Seal No.: Δ Yes Δ No
Date/Time: Company / /	// Date	O Separa	Received	Company		_	Date/Time:	Relinquished by:
Date/Time: 18-12-12-10 Company AC	1 A Dair	Received by		Company	110	18-12	1	March
Date/Time: 3/8-12 845 Company AI	Date	Received by:		Company TAI	248	18-12 8		Relinquished by:
pment	Method of Shipment	111	Time:			Date:		inquished by:
	ments:	Special Instructions/QC Requirements	Special			1000	3	Deliverable Requested: I, II, III, IV, Other (specify)
ples are retained longer than 1 month) Archive For Months	may be assessed if samples Disposal By Lab	Sample Disposal (A fee may the Return To Client	Sample					Possible Hazard Identification Unconfirmed
		-						
							•	
			×	Water		10:00 Pacific	3/17/12	Outfall 009 (440-5816-3)
X	対理を言葉		X	Preservation Code:	Preserva	1	X	
Special Instructions/Note:					_	\vdash	Sample Date	Sample Identification - Client ID (Lab ID)
tal Number	44444		ld Filtered	Matrix (w-water, 9-solid,	Sample Type (C=comp,	Sample		
Of co Other:							SSOW#:	Site: Boeing SSFL
K-EDIA W-ph 4-5 L-EDA Z-other (specify)			E.				Project #: 44002624	Project Name: Boeing SSFL outfalls
J - DI Water	2000						WO #:	Email:
G Amelior S - H2SO4 H - Ascorbic Acid T - TSP Dodecahydrate							PO#:	Phone:
								State, Zip: CA, 93003
G - Zn Acetate O - AsNaO2	n na					days):	TAT Requested (days):	City: Ventura
A - HCL M - Hexane	-,					sted:	4/2/2012	O Transport #107,
440-5816-1	Requested	Analysis F						Aquatic Testing Laboratories
Page: Page 1 of 1		E-Mail: debby.wilson@testamericainc.com	y.wilson@te	debby			Phone:	1
O(S): COC No: 440-2693.1	Carrier Tracking No(s):		Lab PM: Wilson, Debby	Lab P Wils			Sampler:	Client Information (Sub Contract Lab)
THE LEADER IN ENVIRONMENTAL TESTING		Chain of custody Necold	1 000	all	,			Irvine, CA 92614-5817 Phone (949) 261-1022 Fax (949) 260-3297
TestAmerica TestAmerica		Doors	ָהָּ בּייַ	, h i i o	_			TestAmerica Irvine 17461 Derian Ave Suite 100

REFERENCE TOXICANT DATA

FATHEAD MINNOW ACUTE Reference Toxicant - SDS

QA/QC Batch No.: RT-120301

TEST SUMMARY

Species: Pimephales promelas.

Age: 12 days old. Regulations: NPDES.

Test chamber volume: 250 ml. Feeding: Prior to renewal at 48 hrs.

Temperature: 20 +/- 1°C. Number of replicates: 2. Dilution water: MHSF.

Source: In-lab culture. Test type: Static-Renewal.

Test Protocol: EPA-821-R-02-012.

Endpoints: LC50 at 96 hrs. Test chamber: 600 ml beakers.

Aeration: None.

Number of organisms per chamber: 10. Photoperiod: 16/8 hrs light/dark.

TEST DATA

					2000	DOI DA							
		INITIA	L			24 Hr	_		48 Hr				
Date/Time:	3-1-	1)	1070	3-	2-12		10	ソン	3-3-1	2		10)0	
Analyst:		Ź	7			7					1		
NEWSCHIEF DES	°C	DO	pН	°C	DO	pН	# [Dead	°C	DO	pН	# E	ead
		100	pri			pri	A	В		<i>D</i> 0	pm	Α	В
Control	19.7	8. 7	8.2	19.7	8.3	7.8	U	0	19.2	8.1	7.9	0	0
1.0 mg/l	19.7	8.9	8.0	19.2	8.3	7.7	0	U	19.2	8.3	7. 9	0	0
2.0 mg/l	19.6	8.9	8.0	19.3	8.4	7.7	U	0	19.1	8.1	7.9	0	0
4.0 mg/l	19.6	9.0	8.0	19.4	8.1	7.6	0	0	19.2	8.4	7.9	0	0
8.0 mg/l	19.6	9.1	8. /	19.2	8.3	7.7	10	10	1	_	1	-	_
16.0 mg/l	19.6	9. 2	8.1	19.3	8.1	7.5	10	10	_	_	1	1	-

	R	RENEWA	AL.		72 Hr					96 Hr				
Date/Time:	3->-	12	1100	3-4-	12		1100	2	3-5	5-12	_ ,	104	5	
Analyst:			7			1	Z				n			
	°C	DO	pН	∞	DO	pН	# D	Dead	%€	DO	pН	# D	ead	
		DO	pri		<i>D</i> 0	pri	Α	В		ЪО	pri	A	В	
Control	19.8	8.0	8.1	14.7	7.4	7. 9	0	U	19.3	7-5	79	0	0	
1.0 mg/l	19.3	8.2	8.1	146	7.4	7.8	0	0	19.3	7-6	7.9	0	0	
2.0 mg/l	19.2	8.4	8.0	19.6	7.6	7,8	0	0	19.3	7-8	7.4	0	0	
4.0 mg/l	19.3	8.4	7.9	19.6	7.8	7.8	0	0	19.4	2.7	25	0	/	
8.0 mg/l	-	-	-	-	-	_	-	~	-	-	1.	-	-	
16.0 mg/l	-	_	-	_	-	_	_	-	-	-	=	_	-	

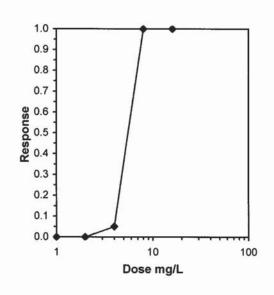
Control: Alkalinity: 6 8 Comments:

mg/l; Hardness: 92 mg/l; Conductivity: >/2 umho. Alkalinity: 68 mg/l; Hardness: 93 mg/l; Conductivity: 7/7 umho.

Concentration-response relationship acceptable? (see attached computer analysis):

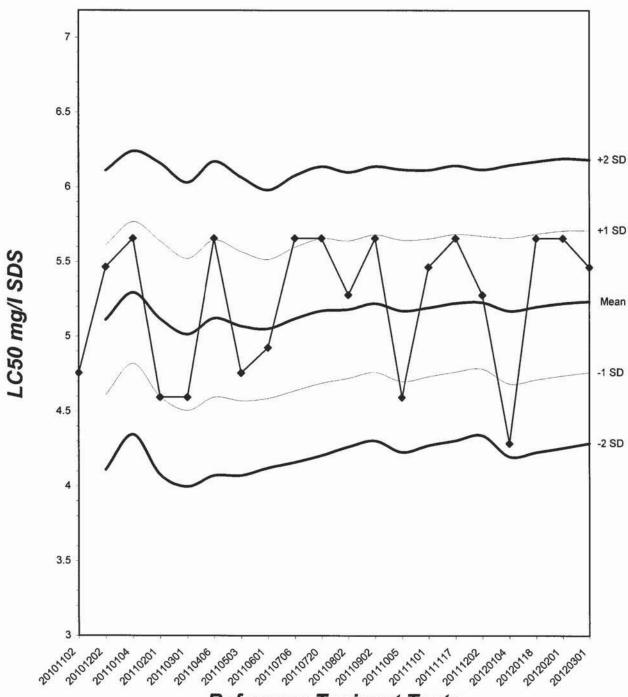
Yes response curve normal)

No (dose interrupted indicated or non-normal)


				Acute Fish T	est-96	Hr Survival	
Start Date:	3/1/2012	10:30	Test ID:	RT120301f		Sample ID:	REF-Ref Toxicant
End Date:	3/5/2012	10:45	Lab ID:	CAATL-Aquatic Testin	ng Labs	Sample Type:	SDS-Sodium dodecyl sulfate
Sample Date: Comments:	3/1/2012	10:30	Protocol:	ACUTE-EPA-821-R-0	2-012	Test Species:	PP-Pimephales promelas
Conc-mg/L	1	2				7.50	CONTRACTOR OF THE CONTRACTOR O
D-Control	1.0000	1.0000					
1	1.0000	1.0000					
2	1.0000	1.0000					
4	1.0000	0.9000					
8	0.0000	0.0000					
16	0.0000	0.0000					

			Tra	ansform:	Arcsin Sc	quare Roof		Number Tota
Conc-mg/L	Mean	N-Mean	Mean	Min	Max	CV%	N	Resp Numb
D-Control	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	0
1	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	0
2	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	0
4	0.9500	0.9500	1.3305	1.2490	1.4120	8.661	2	1
8	0.0000	0.0000	0.1588	0.1588	0.1588	0.000	2	20
16	0.0000	0.0000	0.1588	0.1588	0.1588	0.000	2	20

Auxiliary Tests	Statistic	Critical	Skew	Kurt
Normality of the data set cannot be confirmed	2272 XXIII XX			


Equality of variance cannot be confirmed

		and the second s		
Trim Level	EC50	95%	CL	Trimmed Spearman-Karber
0.0%	5.4642	5.1072	5.8461	193811
5.0%	5.5546	5.3505	5.7664	
10.0%	5.5546	5.3505	5.7664	1.0 —
20.0%	5.5546	5.3505	5.7664	4
Auto-0.0%	5.4642	5.1072	5.8461	0.9

Fathead Minnow Acute Laboratory Control Chart

Reference Toxicant Tests

TEST ORGANISM LOG

FATHEAD MINNOW - LARVAL (Pimephales promelas)

QA/QC BATCH NO .: RT120301
SOURCE: In-Lab Culture
DATE HATCHED: Z-18-12
APPROXIMATE QUANTITY: 400
GENERAL APPEARANCE:
MORTALITIES 48 HOURS PRIOR TO TO USE IN TESTING:
DATE USED IN LAB: 3/1/12

AVERAGE FISH WEIGHT: 0.006 gm

LOADING LIMITS: 0.65 gm/liter @ 20°C, 0.40 gm/liter @ 25°C

Approximately 1000 fish per 10 liters limit if held overnight for acclimation without filtration @ 20°C for fish with a mean weight of 0.006 gm.

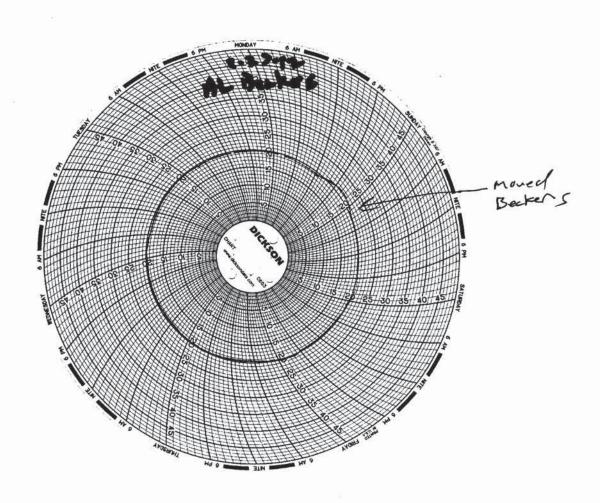
Approximately 650 fish per 10 liters limit if held overnight for acclimation without filtration @ 25°C for fish with a mean weight of 0.006 gm.

200 ml test solution volume = 0.013 gm mean fish weight limit @ 20°C; 0.008 @ 25°C 250 ml test solution volume = 0.016 gm mean fish weight limit @ 20°C; 0.010 @ 25°C

ACCLIMATION WATER QUALITY:

Temp.: /9-7°C pH: 8.2 Ammonia: 20.7 mg/l NH₃-N DO: 8-7 mg/l Alkalinity: 68 mg/l Hardness: 92 mg/l

READINGS RECORDED BY:



Test Temperature Chart

Test No: RT-120301

Date Tested: 03/01/12 to 03/05/06

Acceptable Range: 20+/- 1°C

200 Route 130 North, Cinnaminson, NJ 08077

Phone/Fax: (800) 220-3675/ 786-0262

http://www.emsl.com E-mail: MicrobiologyLab@emsl.com

 Client: TestAmerica Irvine
 EMSL Order ID: 371204379

 17461 Derian Avenue Suite 100
 Date Received: 3/20/2012

 Irvine , CA 92614
 Date Analyzed: 3/21/2012

 Attn.
 Date Reported: 3/23/2012

Project: Boeing SSFL NPDES/44002624 Date Amended:

Real-Time PCR Analysis for Human Bacteroides

(Based on a published method SAM: 348 - 357, 2010), EMSL Test Code: M199, Revision No. 3, 04/18/2011)

•	(Dased on a published method 5/141. 540 - 557, 2010), EMSE Test Code. 14177, Revision 140. 5, 04/10/2011)					
Lab Sample Number	Client Sample ID	Location	Amount Received	Amount Sampled	CEs /100 mL	
4379-1	Outfall 009(440-5816-3)		Water 250 ml V	Vater 250 ml	None Detected	

EMSL maintains liability limited to cost of analysis. Interpretation of the data contained in this report is the responsibility of the client. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. The above test report relates only to the items tested. EMSL bears no responsibility for sample collection activities or analytical method limitations.

Note: The PCR primer is HF183 and the qPCR probe and primer was evaluated in 2010 by EPA scientists. The real-time PCR based on HF183 detects human specific total bacteroides predominantly with minor cross-detections on chicken and dog fecal materials. CEs: Cell Equivalents, measured by PCR using genomic DNA standards.

USEPA License No: 0240-02

Quar L:

Quanyi "Charlie" Li, Ph.D.

Director, PCR and DNA Analysis Lab

EBERLINE ANALYTICAL CORPORATION
2030 Wright Avenue
Richmond, California 94804-3849
Phone (510) 235-2633 Fax (510) 235-0438
Toll Free (800) 841-5487
www.eberlineservices.com

April 11, 2012

Ms. Debby Wilson Test America Irvine 17461 Derian Ave., Ste. 100 Irvine, CA 92614

Reference:

Test America-Irvine 44002624

Eberline Analytical Report S203068-8602

Sample Delivery Group 8602

Dear Ms. Wilson:

Enclosed is a Level IV CLP-like data package (on CD) for two water samples received under Test America Project No. 44002624. The samples were received on March 21, 2012.

Please call me, if you have any questions concerning the enclosed report.

Sincerely,

Joseph Verville

Client Services Manager

NJV/mw

Enclosure: Level IV CLP-like Data Package CD

Case Narrative, page 1

April 11, 2012

1.0 General Comments

Sample delivery group 8602 consists of the analytical results and supporting documentation for two water samples. Sample ID's and reference dates/times are given in the Sample Summary section of the Summary Data report. The samples were received as stated on the chain-of-custody document. Any discrepancies are noted on the Eberline Analytical Sample Receipt Checklist. No holding times were exceeded.

Tritium and gamma analyses were performed on the samples as received i.e. the samples were not filtered. The analytical volumes for all other analyses were subjected to a full nitric acid/hydrofluoric acid dissolution, and analyses were performed on the dissolution volumes.

2.0 Quality Control

Quality Control Samples consisted of laboratory control samples (LCS), method blanks, and duplicate analyses. Included in the data package are copies of the Eberline Analytical radiometrics data sheets. The radiometrics data sheets for the QC LCS and QC blank samples indicate Eberline Analytical's standard QC aliquot of 1.0 sample; results for those QC types are calculated as pCi/sample. The QC LCS and QC blank sample results reported in the Summary Data Section have been divided by the appropriate method specific aliquot (see the Lab Method Summaries for specific aliquots) in order to make the results comparable to the field sample results. All QC sample results were within required control limits.

3.0 Method Errors

The error for each result is an estimate of the significant random uncertainties incurred in the measurement process. These are propagated to each final result. They include the counting (Poisson) uncertainty, as well as those intrinsic errors due to carrier or tracer standardization, aliquoting, counter efficiencies, weights, or volumes. The following method errors were propagated to the count error to calculate the 2σ error (Total):

Analysis	Method Error			
Gross alpha	20.6%			
Gross beta	11.0%			
Tritium	10.0%			
Sr-90	10.4%			
Ra-226	16.4%			
Ra-228	10.4%			
Uranium,Total				
Gamma Spec.	7.0%			

6

4

5

6

8

46

11

Test America Test America Project No. 44002624

Case Narrative, page 2

April 11, 2012

4.0 Analysis Notes

- **4.1 Gross Alpha/Gross Beta Analysis** No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.2 Tritium Analysis** No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.3 Strontium-90 Analysis** No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.4** Radium-226 Analysis No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.5** Radium-228 Analysis No problems were encountered during the processing of the samples. All quality control sample results were within required control limits
- 4.6 Total Uranium Analysis No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.
- **4.7 Gamma Spectroscopy** No problems were encountered during the processing of the samples. All quality control sample results were within required control limits.

5.0 Case Narrative Certification Statement

"I certify that this data package is in compliance with the SOW, both technically and for completeness, for other than the conditions detailed above. Release of the data obtained in this hard copy data package has been authorized by the Laboratory Manager or a designee, as verified by the following signature."

Joseph Verville

Client Services Manager

4/12/11 Date

Page 69 of 113

2

1

5

6

R

11

1

11:

EBERLINE ANALYTICAL SDG 8602

SDG 8602 Contact Joseph Verville

Client <u>Test America</u>, <u>Inc.</u> Contract <u>44002624</u>

SUMMARY DATA SECTION

TABLE OF	CO	N T	E N	T S	
About this section	. ₩I	(·	1
Sample Summaries	•	(#1)	•	•	3
Prep Batch Summary	•	٠	•	ě	5
Work Summary	3 * 3	2 9 12			6
Method Blanks	S a 8		(*)	(*)	8
Lab Control Samples	•		•	•	9
Duplicates	(*)	5 9 .)		:● ::	10
Data Sheets	920		•		11
Method Summaries	•	٠	٠	•	13
Report Guides	300			•	21
End of Section	•	•	•	¥	35

Prepared by

Lab id EAS Protocol TA Version Ver 1.0 Form DVD-TOC Version $\frac{3.06}{2.06}$ Report date $\frac{04}{11}$

SDG 8602

SDG <u>8602</u>

Contact Joseph Verville

REPORT GUIDE

Client Test America, Inc.

Contract <u>44002624</u>

ABOUT THE DATA SUMMARY SECTION

The Data Summary Section of a Data Package has all data, in several useful orders, necessary for first level, routine review of the data package for a Sample Delivery Group (SDG). This section follows the Data Package Narrative, which has an overview of the data package and a discussion of special problems. It is followed by the Raw Data Section, which has full details.

The Data Summary Section has several groups of reports:

SAMPLE SUMMARIES

The Sample and QC Summary Reports show all samples, including QC samples, reported in one SDG. These reports cross-reference client and lab sample identifiers.

PREPARATION BATCH SUMMARY

The Preparation Batch Summary Report shows all preparation batches (lab groupings reflecting how work was organized) relevant to the reported SDG with information necessary to check the completeness and consistency of the SDG.

WORK SUMMARY

The Work Summary Report shows all samples and work done on them relevant to the reported SDG.

METHOD BLANKS

The Method Blank Reports, one for each Method Blank relevant to the SDG, show all results and primary supporting information for the blanks.

LAB CONTROL SAMPLES

The Lab Control Sample Reports, one for each Lab Control Sample relevant to the SDG, show all results, recoveries and primary supporting information for these QC samples.

DUPLICATES

REPORT GUIDES

Page 1

SUMMARY DATA SECTION

Page 1

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06
Report date 04/11/12

4

5

7

10

11

4.0

SDG 8602

SDG <u>8602</u> Contact <u>Joseph Verville</u>

GUIDE, cont.

Client <u>Test America</u>, <u>Inc</u>. Contract 44002624

ABOUT THE DATA SUMMARY SECTION

The Duplicate Reports, one for each Duplicate and Original sample pair relevant to the SDG, show all results, differences and primary supporting information for these QC samples.

MATRIX SPIKES

The Matrix Spike Reports, one for each Spiked and Original sample pair relevant to the SDG, show all results, recoveries and primary supporting information for these QC samples.

DATA SHEETS

The Data Sheet Reports, one for each client sample in the SDG, show all results and primary supporting information for these samples.

METHOD SUMMARIES

The Method Summary Reports, one for each test used in the SDG, show all results, QC and method performance data for one analyte on one or two pages. (A test is a short code for the method used to do certain work to the client's specification.)

REPORT GUIDES

The Report Guides, one for each of the above groups of reports, have documentation on how to read the associated reports.

REPORT GUIDES
Page 2
SUMMARY DATA SECTION
Page 2

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06
Report date 04/11/12

4

5

6

8

10

11

12

Ш

SDG 8602

SDG 8602
Contact Joseph Verville

LAB SAMPLE SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>44002624</u>

LAB SAMPLE ID	CLIENT SAMPLE ID	LOCATION	MATRIX	LEVEL	sas no	CHAIN OF CUSTODY	COLLECTED
S203068-01	OUTFALL 009 COMPOSITE	BOEING-SSFL	WATER			440-2808.1	03/18/12 08:12
S203068-02	TRIP-BLANK (440-5832-3)	BOEING-SSFL	WATER			440-5832-1	03/19/12 18:03
S203068-03	Lab Control Sample		WATER				
S203068-04	Method Blank		WATER				
S203068-05	Duplicate (S203068-01)	BOEING-SSFL	WATER				03/18/12 08:12

LAB SUMMARY

Page 1

SUMMARY DATA SECTION

Page 3

Lab id EAS

Protocol TA

Version Ver 1.0

Form DVD-LS

Version 3.06

Report date 04/11/12

3

5

6

8

10

11

SDG 8602

SDG <u>8602</u> Contact <u>Joseph Verville</u>

QC SUMMARY

Client Test America, Inc. Contract <u>44002624</u>

ос ватсн	CHAIN OF CUSTODY	CLIENT SAMPLE ID	MATRIX	% MOIST	SAMPLE AMOUNT	BASIS AMOUNT	DAYS S		LAB SAMPLE ID	DEPARTMENT SAMPLE ID
8602	440-2808.1	OUTFALL 009 COMPOSITE	WATER		10.0 L		03/21/12	3	\$203068-01	8602-001
	440-5832-1	TRIP-BLANK (440-5832-3)	WATER		10.0 L		03/21/12	2	S203068-02	8602-002
		Method Blank Lab Control Sample Duplicate (S203068-01)	WATER WATER WATER		10.0 L		03/21/12	3	\$203068-04 \$203068-03 \$203068-05	8602-004 8602-003 8602-005

QC SUMMARY Page 1 SUMMARY DATA SECTION Page 4

Lab id EAS Protocol TA Version Ver 1.0 Form DVD-QS Version 3.06 Report date <u>04/11/12</u>

4/24/2012

Page 74 of 113

SDG 8602

SDG	8602
Contact	Joseph Verville

PREP BATCH SUMMARY

Client <u>Test America, Inc.</u>
Contract <u>44002624</u>

			PREPARATION	ERROR	<u> </u>		~ PLA	NCHETS 2	ANALYZ	ED		QUALI-
TEST	MATRIX	METHOD	BATCH	2σ %	CLIENT	MORE	RE	BLANK	LCS	DUP/ORIG I	MS/ORIG	FIERS
Beta	Counting											
AC	WATER	Radium-228 in Water	7271-128	10.4	2			1	1	1/1		
SR	WATER	Strontium-90 in Water	7271-128	10.4	2			1	1	1/1		
Gas F	roportion	al Counting										
80A	WATER	Gross Alpha in Water	7271-128	20.6	2			1	1	1/1		
80B	WATER	Gross Beta in Water	7271-128	11.0	2			1	1	1/1		
Gamma	Spectros	сору										
GAM	WATER	Gamma Emitters in Water	7271-128	7.0	2			1	1	1/1		
Kinet	ic Phosph	orimetry										
U_T	WATER	Uranium, Total	7271-128		2			1	1	1/1		
Liqui	ld Scintil	lation Counting										
H	WATER	Tritium in Water	7271-128	10.0	1			1	1	1/1		
Rador	n Counting			·				·				
RA	WATER	Radium-226 in Water	7271-128	16.4	2			1	1	1/1		

Blank, LCS, Duplicate and Spike planchets are those in the same preparation batch as some Client sample.

PREP BATCH SUMMARY
Page 1
SUMMARY DATA SECTION
Page 5

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-PBS</u>

Version <u>3.06</u>

Report date <u>04/11/12</u>

5

7

9

10

12

SDG 8602

SDG <u>8602</u> Contact <u>Joseph Verville</u>

LAB WORK SUMMARY

Client Test America, Inc.

Contract 44002624

LAB SAMPLE COLLECTED RECEIVED	CLIENT SAMPLE ID LOCATION CUSTODY SAS no	MATRIX	PLANCHET	TEST	SUF- FIX	ANALYZED	REVIEWED	ВХ	METHOD
S203068-01	OUTFALL 009 COMPOSITE		8602-001	80A/80		04/02/12	04/06/12	MWT	Gross Alpha in Water
03/18/12	BOEING-SSFL	WATER	8602-001	80B/80		04/02/12	04/06/12	MWT	Gross Beta in Water
03/21/12	440-2808.1		8602-001	AC		04/06/12	04/09/12	BW	Radium-228 in Water
			8602-001	GAM		03/27/12	04/03/12	BM	Gamma Emitters in Water
			8602-001	H		03/27/12	03/29/12	BW	Tritium in Water
			8602-001	RA		04/05/12	04/06/12	MWT	Radium-226 in Water
			8602-001	SR		04/06/12	04/10/12	BW	Strontium-90 in Water
			8602-001	U_T		04/02/12	04/02/12	B₩	Uranium, Total
S203068-02	TRIP-BLANK (440-5832-3)		8602-002	80A/80		04/02/12	04/06/12	MWT	Gross Alpha in Water
03/19/12	BOEING-SSFL	WATER	8602-002	80B/80		04/02/12	04/06/12	MWT	Gross Beta in Water
03/21/12	440-5832-1		8602-002	AC		04/06/12	04/09/12	BW	Radium-228 in Water
			8602-002	GAM		03/27/12	04/03/12	BW	Gamma Emitters in Water
			8602-002	RA		04/05/12	04/06/12	MWT	Radium-226 in Water
			8602-002	SR		04/06/12	04/10/12	BW	Strontium-90 in Water
			8602-002	U_T		04/02/12	04/02/12	BW	Uranium, Total
S203068-03	Lab Control Sample		8602-003	80A/80		04/02/12	04/06/12	MWT	Gross Alpha in Water
		WATER	8602-003	80B/80		04/02/12	04/06/12	TWM	Gross Beta in Water
			8602-003	AC		04/06/12	04/09/12	BW	Radium-228 in Water
			8602-003	GAM		03/27/12	04/03/12	BW	Gamma Emitters in Water
			8602-003	H		03/27/12	03/29/12	BW	Tritium in Water
			8602-003	RA		04/05/12	04/06/12	MWT	Radium-226 in Water
			8602-003	SR		04/06/12	04/10/12	BW	Strontium-90 in Water
			8602-003	U_T			04/02/12	BW	Uranium, Total
S203068-04	Method Blank		8602-004	80A/80	•	04/05/12	04/06/12	MWT	Gross Alpha in Water
		WATER	8602-004	80B/80		04/05/12	04/06/12	MWT	Gross Beta in Water
			8602-004	AC		04/06/12	04/09/12	BW	Radium-228 in Water
			8602-004	GAM		04/02/12	04/03/12	BW	Gamma Emitters in Water
			8602-004	H		03/27/12	03/29/12	BW	Tritium in Water
			8602-004	RA		04/05/12	04/06/12	MWT	Radium-226 in Water
			8602-004	SR		04/06/12	04/10/12	BW	Strontium-90 in Water
			8602-004	U_T		04/02/12	04/02/12	BW	Uranium, Total

WORK SUMMARY

Page 1

SUMMARY DATA SECTION

Page 6

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-LWS</u>

Version <u>3.06</u>

Report date <u>04/11/12</u>

9

Δ

5

7

_

10

12

SDG <u>8602</u>

Contact Joseph Verville

WORK SUMMARY, cont.

Client Test America, Inc.

Contract <u>44002624</u>

LAB SAMPLE	CLIENT SAMPLE	ID	MARIDITY			SUF-				
COLLECTED	LOCATION CUSTODY	SAS no	MATRIX	PLANCHET	TEST	FIX	ANALYZED	REVIEWED	BY	METHOD
S203068-05	Duplicate (S2	03068-01)		8602-005	80A/80		04/02/12	04/06/12	MWT	Gross Alpha in Water
03/18/12	BOEING-SSFL		WATER	8602-005	80B/80		04/02/12	04/06/12	MWT	Gross Beta in Water
03/21/12				8602-005	AC		04/06/12	04/09/12	BW	Radium-228 in Water
				8602-005	GAM		03/28/12	04/03/12	BW	Gamma Emitters in Water
				8602-005	Н		03/27/12	03/29/12	BW	Tritium in Water
				8602-005	RA		04/05/12	04/06/12	MWT	Radium-226 in Water
				8602-005	SR		04/06/12	04/10/12	BW	Strontium-90 in Water
				8602-005	U_T		04/02/12	04/02/12	BW	Uranium, Total

TEST	SAS no	COUNTS	OF TESTS E	Y SAMPLE TYPE CLIENT MORE	RE BLANK	LCS	DUP SPIKE	TOTAL
80A/80		Gross Alpha in Water	900.0	2	1	1	1	5
80B/80		Gross Beta in Water	900.0	2	1	1	1	5
AC		Radium-228 in Water	904.0	2	1	1	1	5
GAM		Gamma Emitters in Water	901.1	2	1	1	1	5
H		Tritium in Water	906.0	ı	1	1	3.	4
RA		Radium-226 in Water	903.1	2	1	1	1	5
SR		Strontium-90 in Water	905.0	2	1	1	1	5
U_T		Uranium, Total	D5174	2	1	1	1	5
TOTALS				15	8	8	8	39

WORK SUMMARY

Page 2

SUMMARY DATA SECTION

Page 7

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-LWS

 Version
 3.06

 Report date
 04/11/12

3

4

5

7

9

14

12

Ш

8602-004

METHOD BLANK

Method Blank

	8602 Joseph Verville		Test America, 44002624	Inc.	
Lab sample id Dept sample id		Client sample id Material/Matrix			WATER

ANALYTE	CAS NO	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST
Gross Alpha	12587461	-0.295	0.32	0.838	3.00	U	80A
Gross Beta	12587472	0.532	0.80	1.31	4.00	U	80B
Tritium	10028178	-5.81	14	24.5	500	U	H
Radium-226	13982633	0.149	0.27	0.460	1.00	U	RA
Radium-228	15262201	-0.106	0.15	0.393	1.00	U	AC
Strontium-90	10098972	0.159	0.19	0.382	2.00	U	SR
Uranium, Total		0	0.007	0.017	1.00	U	UΤ
Potassium-40	13966002	-4.54	19	_33.1	25.0	U	GAM
Cesium-137	10045973	0.540	0.78	2.10	20.0	U	GAM

QC-BLANK #81389

METHOD BLANKS
Page 1
SUMMARY DATA SECTION
Page 8

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-DS
Version 3.06
Report date 04/11/12

6

5

b

8

11

12

SDG 8602

8602-003

Lab Control Sample

LAB CONTROL SAMPLE

 SDG
 8602
 Client
 Test America, Inc.

 Contact
 Joseph Verville
 Contract
 44002624

 Lab sample id
 \$203068-03
 Client sample id
 Lab Control Sample

 Dept sample id
 8602-003
 Material/Matrix
 WATER

ANALYTE	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST	ADDED pCi/L	2σ ERR pCi/L	REC	2σ LMTS (TOTAL)	PROTOCOL
Gross Alpha	42.9	2.1	0.589	3.00	*	80A	37.0	1.5	116	75-125	70-130
Gross Beta	33.5	1.2	0.799	4.00		80B	34.0	1.4	99	88-112	70-130
Tritium	327	23	24.8	500	J	Н	367	15	89	88-112	80-120
Radium-226	50.2	2.2	0.794	1.00		RA	50.1	2.0	100	83-117	80-120
Radium-228	5.28	0.28	0.366	1.00		AC	5.33	0.21	99	88-112	60-140
Strontium-90	8.25	0.69	0.354	2.00		SR	8.50	0.34	97	86-114	80-120
Uranium, Total	67.7	7.7	0.172	1.00		U_T	62.5	2.5	108	87-113	80-120
Cobalt-60	128	5.2	4.03	10.0		GAM	131	5.2	98	91-109	80-120
Cesium-137	155	5.1	4.92	20.0		GAM	147	5.9	105	91-109	80-120

QC-LCS #81388

LAB CONTROL SAMPLES
Page 1
SUMMARY DATA SECTION
Page 9

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-LCS

 Version
 3.06

 Report date
 04/11/12

- 5

5

8

10

11

8602-005

DUPLICATE

OUTFALL 009 COMPOSITE

SDG 8602

Contact Joseph Verville

DUPLICATE

Lab sample id <u>S203068-05</u> Dept sample id <u>8602-005</u> ORIGINAL

Lab sample id <u>S203068-01</u> Dept sample id 8602-001

Received <u>03/21/12</u>

Client Test America, Inc.

Contract 44002624

Client sample id OUTFALL 009 COMPOSITE

Location/Matrix BOEING-SSFL

Collected/Volume 03/18/12 08:12 10.0 L

Chain of custody id 440-2808.1

ANALYTE	DUPLICATE pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST	ORIGINAL pCi/L	2σ ERR (COUNT)	MDA pCi/L	QUAL:I- FIERS	RPD %	3σ TOT	DER ø
Gross Alpha	1.52	0.39	0.315	3,00	J	A08	1.37	0.36	0.308	J	10	70	0.4
Gross Beta	2.99	0.74	1.08	4.00	J	80B	2.46	0.61	0.885	J	19	58	1.0
Tritium	-74.5	86	151	500	U	Н	-34.6	85	146	U			0.7
Radium-226	0.267	0.35	0.591	1.00	U	RA	0.214	0.38	0.650	U	-		0.2
Radium-228	0.022	0.16	0.390	1.00	U	AC	-0.055	0.13	0.372	U	-		0.7
Strontium-90	-0.137	0.40	0.966	2.00	Ū	SR	-0.107	0.37	0.803	U	-		0.1
Uranium, Total	0.109	0.014	0.017	1.00	J	U_T	0.117	0.014	0.017	J	7	26	0.8
Potassium-40	3.79	12	21.8	25.0	U	GAM	-7.99	20	34.7	U	-		1.0
Cesium-137	0.484	0.58	1.87	20.0	U	GAM	-1.39	2.2	3.83	U	-		1.6

QC-DUP#1 81390

DUPLICATES Page 1 SUMMARY DATA SECTION

Page 10

Lab id EAS Protocol TA Version Ver 1.0 Form DVD-DUP Version 3.06 Report date <u>04/11/12</u>

8602-001

DATA SHEET

OUTFALL 009 COMPOSITE

	8602 Joseph Verville		Test America, Inc. 44002624	
Lab sample id Dept sample id Received	•	Location/Matrix	03/18/12 08:12 10.0 L	WATER

ANALYTE	CAS NO	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST
Gross Alpha	12587461	1.37	0.36	0.308	3.00	J	80A
Gross Beta	12587472	2.46	0.61	0.885	4.00	J	80B
Tritium	10028178	-34.6	85	146	500	U	H
Radium-226	13982633	0.214	0.38	0.650	1.00	U	RA
Radium-228	15262201	-0.055	0.13	0.372	1.00	U	AC
Strontium-90	10098972	-0.107	0.37	0.803	2.00	U	SR
Uranium, Total		0.117	0.014	0.017	1.00	J	UΤ
Potassium-40	13966002	-7.99	20	34.7	25.0	U	GAM
Cesium-137	10045973	-1.39	2.2	3.83	20.0	U	GAM

DATA SHEETS
Page 1
SUMMARY DATA SECTION
Page 11

Lab id EAS
Protocol TA

Version Ver 1.0
Form DVD-DS
Version 3.06
Report date 04/11/12

3

6

7

_

10

11

1

EBERLINE ANALYTICAL SDG 8602

8602-002

DATA SHEET

TRIP-BLANK (440-5832-3)

ANALYTE	CAS NO	RESULT pCi/L	2σ ERR (COUNT)	MDA pCi/L	RDL pCi/L	QUALI- FIERS	TEST
Gross Alpha	12587461	-0.039	0.13	0.268	3.00	Ŭ	80A
Gross Beta	12587472	-0.112	0.55	0.929	4.00	U	80B
Radium-226	13982633	0.040	0.31	0.570	1.00	U	RA
Radium-228	15262201	-0.114	0.18	0.352	1.00	U	AC
Strontium-90	10098972	-0.073	0.40	0.961	2.00	U	SR
Uranium, Total		0	0.007	0.017	1.00	U	UТ
Potassium-40	13966002	-24.7	34	62.9	25.0	U	GAM
Cesium-137	10045973	-0.882	1.3	3.81	20.0	U ·	GAM

DATA SHEETS
Page 2
SUMMARY DATA SECTION
Page 12

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-DS
Version 3.06
Report date 04/11/12

SDG 8602

Test <u>AC</u> Matrix <u>WATER</u>

SDG <u>8602</u>

Contact <u>Joseph Verville</u>

LAB METHOD SUMMARY

RADIUM-228 IN WATER BETA COUNTING Client <u>Test America, Inc.</u> Contract <u>44002624</u>

RESULTS

LAB RAW SUF-

SAMPLE ID	TEST FIX	PLANCHET	CLIENT SAMPLE ID	Radium-228
Preparation	batch 727	1-128		
S203068-01		8602-001	OUTFALL 009 COMPOSITE	U .
S203068-02		8602-002	TRIP-BLANK (440-5832-3)	υ
S203068-03		8602-003	Lab Control Sample	ok
S203068-04		8602-004	Method Blank	υ
S203068-05		8602-005	Duplicate (S203068-01)	- U
Nominal valu	es and li	mits from m	ethod RDLs (pCi/L)	1.00

METHOD PERFORMANCE

LAB	RAW SUF-		MDA	ALIQ	PREP	DILU-	YIELD	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX	CLIENT SAMPLE ID	pCi/L	L	FAC	TION	બ	ક	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
Preparation	batch 727	1-128 2σ prep er:	cor 10.4 % Re	ference	Lab N	Totebool	c No.	7271	pg.012	!					
S203068-01		OUTFALL 009 COMPOSI	TE 0.372	1.80			79		150			19	04/06/12	04/06	GRB-221
S203068-02		TRIP-BLANK (440-583)	2-3) 0.352	1.80			81		150			18	04/06/12	04/06	GRB-222
S203068-03		Lab Control Sample	0.366	1.80			77		150				04/06/12	04/06	GRB-223
S203068-04		Method Blank	0.393	1.80			81		150				04/06/12	04/06	GRB-224
S203068-05		Duplicate (S203068-	0.390	1.80			80		150			19	04/06/12	04/06	GRB-229
Nominal val	ues and li	mits from method	1.00	1.80			30-10	5	50			180			

PROCEDURES REFERENCE 904.0

DWP-894 Sequential Separation of Actinium-228 and Radium-226 in Drinking Water (>1 Liter Aliquot),

rev 5

AVERAGES ± 2 SD MDA 0.375 ± 0.034
FOR 5 SAMPLES YIELD 80 ± 3

METHOD SUMMARIES

Page 1

SUMMARY DATA SECTION

Page 13

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-LMS</u>

Version <u>3.06</u>

Report date <u>04/11/12</u>

Δ

5

7

0

46

SDG 8602

Test <u>SR</u> Matrix <u>WATER</u>
SDG <u>8602</u>
Contact <u>Joseph Verville</u>

LAB METHOD SUMMARY

STRONTIUM-90 IN WATER
BETA COUNTING

Client <u>Test America, Inc.</u>
Contract <u>44002624</u>

5

RESULTS

SAMPLE ID TEST	FIX PLANCHET	CLIENT SAMPLE ID	Strontium-90	
Preparation batc	h 7271-128			
S203068-01	8602-001	OUTFALL 009 COMPOSITE	U	
S203068-02	8602-002	TRIP-BLANK (440-5832-3)	Ū	
\$203068-03	8602-003	Lab Control Sample	ok	
S203068-04	8602-004	Method Blank	U	
S203068-05	8602-005	Duplicate (S203068-01)	- U	

1

METHOD PERFORMANCE

LAB	RAW SUF-	MDA	ALIQ	PREP	DILU-	AIETD	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX CLIENT SAMPLE ID	pCi/L	L	FAC	TION	ે	양	min	ke₹	KeV	HELD	PREPARED	YZED	DETECTOR
Preparation	batch 7271-128 2σ prep error 10)_4 % Ref	erence	Lab N	iotebool	s No. '	7271	pg. 01.2	2					
S203068-01	OUTFALL 009 COMPOSITE	0.803				92		68			19	04/06/12	04/06	GRB-207
\$203068-02	TRIP-BLANK (440-5832-3)	0.961 _	0.500			78		50			18	04/06/12	04/06	GRB-221
S203068-03	Lab Control Sample	0.354	1.00			85		50				04/06/12	04/06	GRB-225
\$203068-04	Method Blank	0.382	1.00			97		50				04/06/12	04/06	GRB-223
S203068-05	Duplicate (S203068-01)	0.966 _	0.500			84		50			19	04/06/12	04/06	GRB-224
***************************************											·			
Nominal val	ues and limits from method	2.00	1.00			30-10	5	50			180			

PROCEDURES REFERENCE 905.0

CP-380

Strontium in Water Samples, rev 5

AVERAGES ± 2 SD FOR 5 SAMPLES

MDA 0.693 ± 0.608

YIELD <u>87</u> ± <u>15</u>

METHOD SUMMARIES

Page 2

SUMMARY DATA SECTION

Page 14

 Lab id
 EAS

 Protocol
 TA

 Version
 Ver 1.0

 Form
 DVD-LMS

 Version
 3.06

 Report date
 04/11/12

SDG 8602

Test 80A Matrix WATER
SDG 8602
Contact Joseph Verville

LAB METHOD SUMMARY

GROSS ALPHA IN WATER
GAS PROPORTIONAL COUNTING

Client <u>Test America, Inc.</u>
Contract <u>44002624</u>

RESULTS

AB RAW SUF-

CLIENT SAMPLE ID SAMPLE ID TEST FIX PLANCHET Gross Alpha Preparation batch 7271-128 S203068-01 80 8602-001 OUTFALL 009 COMPOSITE 1.37 J TRIP-BLANK (440-5832-3) U S203068-02 80 8602-002 S203068-03 80 8602-003 Lab Control Sample ok 8602-004 Method Blank Ų S203068-04 80 S203068-05 80 8602-005 Duplicate (S203068-01) ok J Nominal values and limits from method RDLs (pCi/L) 3.00

METHOD PERFORMANCE

MDA RAW SUF-ALIQ PREP DILU- RESID EFF COUNT FWHM DRIFT DAYS ANAL-% min keV KeV HELD PREPARED YZED DETECTOR pCi/L FAC TION SAMPLE ID TEST FIX CLIENT SAMPLE ID L ШQ Preparation batch 7271-128 2σ prep error 20.6 % Reference Lab Notebook No. 7271 pg.012 S203068-01 80 OUTFALL 009 COMPOSITE 0.308 0.300 13 400 15 03/29/12 04/02 GRB-101 TRIP-BLANK (440-5832-3) 0.268 0.300 0 400 14 03/29/12 04/02 GRB-103 S203068-02 80 \$203068-03 80 Lab Control Sample 0.589 0.300 61 400 03/29/12 04/02 GRB-104 Method Blank 0.838 0.300 62 200 03/29/12 04/05 GRB-101 S203068-04 80 Duplicate (S203068-01) \$203068-05 80 0.315 0.300 14 400 15 03/29/12 04/02 GRB-107 Nominal values and limits from method 3.00 0.300 0-250 100 180

PROCEDURES REFERENCE 900.0

DWP-121 Gross Alpha and Gross Beta in Drinking Water,

rev 10

AVERAGES ± 2 SD MDA 0.464 ± 0.490 FOR 5 SAMPLES RESIDUE 30 ± 59

METHOD SUMMARIES

Page 3

SUMMARY DATA SECTION

Page 15

4

J

7

9

10

10

SDG 8602

Test 80B Matrix WATER SDG 8602 Contact Joseph Verville

LAB METHOD SUMMARY

GROSS BETA IN WATER GAS PROPORTIONAL COUNTING

Client Test America, Inc. Contract <u>44002624</u>

RESULTS

RAW SUF-SAMPLE ID TEST FIX PLANCHET CLIENT SAMPLE ID Gross Beta Preparation batch 7271-128 S203068-01 80 8602-001 OUTFALL 009 COMPOSITE 2.46 J 8602-002 TRIP-BLANK (440-5832-3) S203068-02 80 S203068-03 80 8602-003 Lab Control Sample ok \$203068-04 80 8602-004 Method Blank U S203068-05 80 8602-005 Duplicate (S203068-01) ok Nominal values and limits from method 4.00 RDLs (pCi/L)

METHOD PERFORMANCE

LAB	RAW SUF-		MDA	ALIQ	PREP	DILU-	RESID	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX	CLIENT SAMPLE ID	pCi/L	L	FAC	TION	mg	alo	min	keV	KeV	HELLD	PREPARED	YZED	DETECTOR
D	In the Park RDR	7 100 0 100		£	r - 1- 3	Y - 4 - 1 1	- **- !	7071	010						
Preparation	Daten /2/	1-128 2σ prep error 1	L,U & Re	rerence	Lab r	ocenoo.	K NO.	1211	pg. 012	4					
\$203068-01	80	OUTFALL 009 COMPOSITE	0.885	0.300			13		400			15	03/29/12	04/02	GRB-101
S203068-02	80	TRIP-BLANK (440-5832-3)	0.929	0.300			0		400			14	03/29/12	04/02	GRB-103
S203068-03	80	Lab Control Sample	0.799	0.300			61		400				03/29/12	04/02	GRB-104
S203068-04	80	Method Blank	1.31	0.300			62		200				03/29/12	04/05	GRB-101
S203068-05	80	Duplicate (S203068-01)	1.08	0.300			14		400			15	03/29/12	04/02	GRB-107
											-				
Nominal val	ues and li	mits from method	4.00	0.300			0-25	O	100			180			

PROCEDURES REFERENCE 900.0 DWP-121 Gross Alpha and Gross Beta in Drinking Water, rev 10

AVERAGES ± 2 SD MDA 1.00 ± 0.401 FOR 5 SAMPLES RESIDUE __30 __ ± __59

METHOD SUMMARIES Page 4

SUMMARY DATA SECTION

Page 16

Lab id EAS Protocol TA Version Ver 1.0 Form DVD-LMS Version 3.06 Report date <u>04/11/12</u>

SDG 8602

Test GAM Matrix WATER

SDG 8602

Contact Joseph Verville

LAB METHOD SUMMARY

GAMMA EMITTERS IN WATER
GAMMA SPECTROSCOPY

Client Test America, Inc.
Contract 44002624

RESULTS

LAB RAW SUF-

SAMPLE ID TES	T FIX PLANCHET	CLIENT SAMPLE ID	Cobalt-60	Cesium-13	37
Preparation bat	ch 7271-128				
S203068-01	8602-001	OUTFALL 009 COMPOSITE		U	
S203068-02	8602-002	TRIP-BLANK (440-5832-3)		U	
\$203068-03	8602-003	Lab Control Sample	ok.	ok	
S203068-04	8602-004	Method Blank		U	
S203068-05	8602-005	Duplicate (S203068-01)		- t	U

METHOD PERFORMANCE

LAB SAMPLE ID	RAW SUF- TEST FIX CLIENT SAMPLE ID	MDA pCi/L	ALIQ L	PREP FAC		% YIELD	EFF %	COUNT min	FWHM keV		PREPARED	ANAL- YZED	DETECTOR
Preparation	n batch 7271-128 20 prep error 7.	.0 % Ref	erence	Lab I	Notebool	s No.	7271	pg.01	2				· · · · · · · · · · · · · · · · · · ·
S203068-01	OUTFALL 009 COMPOSITE		2.00					400		9	03/27/12	03/27	MB,G2,0
S203068-02	TRIP-BLANK (440-5832-3)		2.00					400		8	03/27/12	03/27	MB,G5,0
S203068-03	Lab Control Sample		2.00					400			03/27/12	03/27	MB,G8,0
S203068-04	Method Blank		2.00					400			03/27/12	04/02	MB,G1,0
S203068-05	Duplicate (S203068-01)		2.00					400		10	03/27/12	03/28	MB,G8,0
Nominal val	lues and limits from method	6.00	2.00					400		180			

PROCEDURES REFERENCE 901.1

DWP-100 Preparation of Drinking Water Samples for Gamma
Spectroscopy, rev 5

METHOD SUMMARIES

Page 5

SUMMARY DATA SECTION

Page 17

4

5

7

9

11

12

SDG 8602

Test U T Matrix WATER

SDG 8602

Contact Joseph Verville

LAB METHOD SUMMARY

URANIUM, TOTAL
KINETIC PHOSPHORIMETRY

Client <u>Test America</u>, <u>Inc.</u> Contract <u>44002624</u>

RESULTS

LAB	RAW SUF-		Uranium,
SAMPLE ID	TEST FIX PLANCHET	CLIENT SAMPLE ID	Total
Preparation	a batch 7271-128		
5203068-01	8602-001	OUTFALL 009 COMPOSITE	0.117 J
S203068-02	8602-002	TRIP-BLANK (440-5832-3)	υ
\$203068-03	8602-003	Lab Control Sample	ok
S203068-04	8602-004	Method Blank	U
S203068-05	8602-005	Duplicate (S203068-01)	ok j
Nominal val	lues and limits from m	nethod RDLs (pCi/L)	1.00

METHOD PERFORMANCE

LAB	RAW SUF-	MDA	ALIQ	PREP	DILU-	YIELD	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX CLIENT SAMPLE ID	pCi/L	L	FAC	TION	왕	왕	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
Preparation	n batch 7271-128 2σ prep error	Re:	Eerence	Lab N	lotebool	k No.	7271	pg.012	2					
S203068-01	OUTFALL 009 COMPOSITE	0.017	0.0200								15	04/02/12	04/02	KPA-001
\$203068-02	TRIP-BLANK (440-5832-3)	0.017	0.0200								14	04/02/12	04/02	KPA-001
S203068-03	Lab Control Sample	0.172	0.0200									04/02/12		KPA-001
\$203068-04	Method Blank	0.017	0.0200									04/02/12	04/02	KPA-001
S203068-05	Duplicate (S203068-01)	0.017	0.0200								15	04/02/12	04/02	KPA-001
								·····						
Nominal val	ues and limits from method	1.00	0.0200								180			

PROCEDURES REFERENCE D5174

METHOD SUMMARIES

Page 6

SUMMARY DATA SECTION

Page 18

 Lab id EAS

 Protocol TA

 Version Ver 1.0

 Form DVD-LMS

 Version 3.06

 Report date 04/11/12

7

5

7

9

11

SDG 8602

Test H Matrix WATER SDG 8602 Contact Joseph Verville

LAB METHOD SUMMARY

TRITIUM IN WATER

LIQUID SCINTILLATION COUNTING

Client Test America, Inc. Contract <u>44002624</u>

RESULTS

RAW SUF-

SAMPLE ID TEST FI	X PLANCHET	CLIENT SAMPLE ID	Trit	ium
Preparation batch 7	7271-128			
\$203068-01	8602-001	OUTFALL 009 COMPOSITE	U	
S203068-03	8602-003	Lab Control Sample	ok	J
\$203068-04	8602-004	Method Blank	U	
S203068-05	8602-005	Duplicate (S203068-01)	-	U

METHOD PERFORMANCE

LAB	RAW SUF-			MDA.	ALIQ	PREP	DILU-	YIELD	EFF	COUNT	FWHM	DRIFT	DAYS		ANAL-	
SAMPLE ID	TEST FIX	CLIENT S	AMPLE ID	pCi/I	L L	FAC	TION	%	%	min	keV	KeV	HELD	PREPARED	YZED	DETECTOR
Prim.																
Preparation	batch 727	1-128	2σ prep error	10.0 %	Reference	Lab 1	Noteboo	k No.	7271	pg.012	2					
\$203068-01		OUTFALL	009 COMPOSITE	146	0.0100			100		150			9	03/27/12	03/27	LSC-007
S203068-03		Lab Cont:	rol Sample	24.8	0.605			10		150				03/27/12	03/27	LSC-007
S203068-04		Method B	lank	24.5	0.605			10		150				03/27/12	03/27	LSC-007
S203068-05		Duplicate	e (S203068-01)	151	0.0100			100		150			9	03/27/12	03/27	LSC-007
										•						
Nominal val	ues and li	mits from	method	500	0.605					100			180			

PROCEDURES REFERENCE 906.0 DWP-212 Tritium in Drinking Water by Distillation, rev 8 AVERAGES ± 2 SD MDA 86.6 ± 143 FOR 4 SAMPLES YIELD 55 ± 104

METHOD SUMMARIES Page 7

SUMMARY DATA SECTION

Page 19

Lab id EAS Protocol <u>TA</u> Version Ver 1.0 Form DVD-LMS Version 3.06 Report date <u>04/11/12</u>

SDG 8602

Test RA Matrix WATER SDG 8602 Contact Joseph Verville

RAW SUF-SAMPLE ID TEST FIX PLANCHET

8602-001

8602-002

8602-003

8602-004

8602-005

Preparation batch 7271-128

RESULTS

S203068-01

S203068-02

S203068-03

S203068-04

S203068-05

LAB METHOD SUMMARY

RADIUM-226 IN WATER RADON COUNTING

Radium-226

ok

U

1.00

Client Test America, Inc. Contract 44002624

METHOD PERFORMANCE

Nominal values and limits from method

RAW SUF-MDA ALIQ PREP DILU- YIELD EFF COUNT FWHM DRIFT DAYS ANAL-SAMPLE ID TEST FIX CLIENT SAMPLE ID pCi/L L FAC TION 왕 % min keV KeV HELD PREPARED YZED DETECTOR Preparation batch 7271-128 2σ prep error 16.4 % Reference Lab Notebook No. 7271 pg.012 S203068-01 OUTFALL 009 COMPOSITE 0.650 0.100 100 124 18 04/05/12 04/05 RN-011 S203068-02 TRIP-BLANK (440-5832-3) 0.570 0.100 100 124 17 04/05/12 04/05 RN-010 S203068-03 Lab Control Sample 0.794 0.100 100 124 04/05/12 04/05 RN-009 S203068-04 Method Blank 0.460 0.100 100 04/05/12 04/05 RN-013 124 0.591 0.100 S203068-05 Duplicate (S203068-01) 100 124 18 04/05/12 04/05 RN-016 Nominal values and limits from method 1.00 0.100 100 180

PROCEDURES REFERENCE 903.1

DWP-881A Ra-226 Screening in Drinking Water, rev 6

CLIENT SAMPLE ID

OUTFALL 009 COMPOSITE

Lab Control Sample

Method Blank

TRIP-BLANK (440-5832-3)

Duplicate (S203068-01)

RDLs (pCi/L)

AVERAGES ± 2 SD MDA 0.613 ± 0.245 FOR 5 SAMPLES YIELD 100 ± 0

METHOD SUMMARIES

Page 8

SUMMARY DATA SECTION

Page 20

Lab id EAS Protocol TA Version Ver 1.0 Form DVD-LMS Version 3.06 Report date <u>04/11/12</u>

SDG 8602

SDG <u>8602</u> Contact Joseph Verville

REPORT GUIDE

Client <u>Test America</u>, <u>Inc</u>. Contract 44002624

SAMPLE SUMMARY

The Sample and QC Summary Reports show all samples, including QC samples, reported in one Sample Delivery Group (SDG).

The Sample Summary Report fully identifies client samples and gives the corresponding lab sample identification. The QC Summary Report shows at the sample level how the lab organized the samples into batches and generated QC samples. The Preparation Batch and Method Summary Reports show this at the analysis level.

The following notes apply to these reports:

- * LAB SAMPLE ID is the lab's primary identification for a sample.
- * DEPARTMENT SAMPLE ID is an alternate lab id, for example one assigned by a radiochemistry department in a lab.
- * CLIENT SAMPLE ID is the client's primary identification for a sample. It includes any sample preparation done by the client that is necessary to identify the sample.
- * QC BATCH is a lab assigned code that groups samples to be processed and QCed together. These samples should have similar matrices.

QC BATCH is not necessarily the same as SDG, which reflects samples received and reported together.

* All Lab Control Samples, Method Blanks, Duplicates and Matrix Spikes are shown that QC any of the samples. Due to possible reanalyses, not all results for all these QC samples may be relevant to the SDG. The Lab Control Sample, Method Blank, Duplicate, Matrix Spike and Method Summary Reports detail these relationships.

REPORT GUIDES
Page 1
SUMMARY DATA SECTION
Page 21

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>04/11/12</u>

1

5

6

8

9

11

SDG 8602

SDG <u>8602</u> Contact Joseph Verville

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract <u>44002624</u>

PREPARATION BATCH SUMMARY

The Preparation Batch Summary Report shows all preparation batches in one Sample Delivery Group (SDG) with information necessary to check the completeness and consistency of the SDG.

The following notes apply to this report:

- * The preparation batches are shown in the same order as the Method Summary Reports are printed.
- * Only analyses of planchets relevant to the SDG are included.
- * Each preparation batch should have at least one Method Blank and LCS in it to validate client sample results.
- * The QUALIFIERS shown are all qualifiers other than U, J, B, L and H that occur on any analysis in the preparation batch. The Method Summary Report has these qualifiers on a per sample basis.

These qualifiers should be reviewed as follows:

- X Some data has been manually entered or modified. Transcription errors are possible.
- P One or more results are 'preliminary'. The data is not ready for final reporting.
- 2 There were two or more results for one analyte on one planchet imported at one time. The results in DVD may not be the same as on the raw data sheets.

Other lab defined qualifiers may occur. In general, these should be addressed in the SDG narrative.

REPORT GUIDES
Page 2
SUMMARY DATA SECTION
Page 22

Lab id <u>EAS</u>
Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>04/11/12</u>

3

F

6

8

46

11

12

1,

SDG 8602

SDG <u>8602</u> Contact Joseph Verville

REPORT GUIDE

Client <u>Test America</u>, <u>Inc</u>.

Contract 44002624

WORK SUMMARY

The Work Summary Report shows all samples, including QC samples, and all relevant analyses in one Sample Delivery Group (SDG). This report is often useful as supporting documentation for an invoice.

The following notes apply to this report:

- * TEST is a code for the method used to measure associated analytes. Results and related information for each analyte are on the Data Sheet Report. In special cases, a test code used in the summary data section is not the same as in associated raw data. In this case, both codes are shown on the Work Summary.
- * SUFFIX is the lab's code to distinguish multiple analyses (recounts, reworks, reanalyses) of a fraction of the sample. The suffix indicates which result is being reported. An empty suffix normally identifies the first attempt to analyze the sample.
- * The LAB SAMPLE ID, TEST and SUFFIX uniquely identify all supporting data for a result. The Method Summary Report for each TEST has method performance data, such as yield, for each lab sample id and suffix and procedures used in the method.
- * PLANCHET is an alternate lab identifier for work done for one test. It, combined with the TEST and SUFFIX, may be the best link to raw data.
- * For QC samples, only analyses that directly QC some regular sample are shown. The Lab Control Sample, Method Blank, Duplicate, Matrix Spike and Method Summary Reports detail these relationships.
- * The SAS (Special Analytical Services) Number is a client or lab assigned code that reflects special processing for samples, such as rapid turn around. Counts of tests done are lists by SAS number since it is likely to affect prices.

REPORT GUIDES
Page 3
SUMMARY DATA SECTION
Page 23

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06
Report date 04/11/12

4

5

8

10

SDG 8602

SDG <u>8602</u>
Contact <u>Joseph Verville</u>

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract 44002624

DATA SHEET

The Data Sheet Report shows all results and primary supporting information for one client sample or Method Blank. This report corresponds to both the CLP Inorganics and Organics Data Sheet.

The following notes apply to this report:

- * TEST is a code for the method used to measure an analyte. If the TEST is empty, no data is available; the analyte was not analyzed for.
- * The LAB SAMPLE ID and TEST uniquely identify work within the Summary Data Section of a Data Package. The Work Summary and Method Summary Reports further identify raw data that underlies this work.

The Method Summary Report for each TEST has method performance data, such as yield, for each Lab Sample ID and a list of procedures used in the method.

- * ERRORs can be labeled TOTAL or COUNT. TOTAL implies a preparation (non-counting method) error has been added, as square root of sum of squares, to the counting error denoted by COUNT. The preparation errors, which may vary by preparation batch, are shown on the Method Summary Report.
- * A RESULT can be 'N.R.' (Not Reported). This means the lab did this work but chooses not to report it now, possibly because it was reported at another time.
- * When reporting a Method Blank, a RESULT can be 'N.A.' (Not Applicable). This means there is no reported client sample work in the same preparation batch as the Blank's result. This is likely to occur when the Method Blank is associated with reanalyses of selected work for a few samples in the SDG.

The following qualifiers are defined by the DVD system:

U The RESULT is less than the MDA (Minimum Detectable Activity). If the MDA is blank, the ERROR is used as the limit.

REPORT GUIDES

Page 4

SUMMARY DATA SECTION

Page 24

Lab id <u>EAS</u>
Protocol <u>TA</u>
Version <u>Ver 1.0</u>
Form <u>DVD-RG</u>
Version <u>3.06</u>
Report date <u>04/11/12</u>

4

7

Q

14

12

SDG 8602

SDG <u>8602</u> Contact Joseph Verville

GUIDE, cont.

Client <u>Test America</u>, <u>Inc</u>. Contract 44002624

DATA SHEET

- J The RESULT is less than the RDL (Required Detection Limit) and no U qualifier is assigned.
- B A Method Blank associated with this sample had a result without a U flag and, after correcting for possibly different aliquots, that result is greater than or equal to the MDA for this sample.

Normally, B is not assigned if U is. When method blank subtraction is shown on this report, B flags are assigned based on the unsubtracted values while U's are assigned based on the subtracted ones. Both flags can be assigned in this case.

For each sample result, all Method Blank results in the same preparation batch are compared. The Method Summary Report documents this and other QC relationships.

- L Some Lab Control Sample that QC's this sample had a low recovery. The lab can disable assignment of this qualifier.
- H Similar to 'L' except the recovery was high.
- P The RESULT is 'preliminary'.
- X Some data necessary to compute the RESULT, ERROR or MDA was manually entered or modified.
- 2 There were two or more results available for this analyte. The reported result may not be the same as in the raw data.

Other qualifiers are lab defined. Definitions should be in the SDG narrative.

The following values are underlined to indicate possible problems:

- * An MDA is underlined if it is bigger than its RDL.
- * An ERROR is underlined if the 1.645 sigma counting error is bigger than both the MDA and the RESULT, implying that the MDA

REPORT GUIDES
Page 5
SUMMARY DATA SECTION
Page 25

Lab id <u>EAS</u>
Protocol <u>TA</u>
Version <u>Ver 1.0</u>
Form <u>DVD-RG</u>
Version <u>3.06</u>
Report date <u>04/11/12</u>

6

g Q

9

11

12

1.

SDG 8602

SDG <u>8602</u>
Contact <u>Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract 44002624

DATA SHEET

- * A negative RESULT is underlined if it is less than the negative of its 2 sigma counting ERROR.
- * When reporting a Method Blank, a RESULT is underlined if greater than its MDA. If the MDA is blank, the 2 sigma counting error is used in the comparison.

REPORT GUIDES
Page 6
SUMMARY DATA SECTION
Page 26

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06
Report date 04/11/12

2

4

5

7

8

10

SDG 8602

SDG 8602 Contact Joseph Verville

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract 44002624

LAB CONTROL SAMPLE

The Lab Control Sample Report shows all results, recoveries and primary supporting information for one Lab Control Sample.

The following notes apply to this report:

- * All fields in common with the Data Sheet Report have similar usage. Refer to its Report Guide for details.
- * An amount ADDED is the lab's value for the actual amount spiked into this sample with its ERROR an estimate of the error of this amount.

An amount added is underlined if its ratio to the corresponding RDL is outside protocol specified limits.

- * REC (Recovery) is RESULT divided by ADDED expressed as a percent.
- * The first, computed limits for the recovery reflect:
 - 1. The error of RESULT, including that introduced by rounding the result prior to printing.

If the limits are labeled (TOTAL), they include preparation error in the result. If labeled (COUNT), they do not.

- 2. The error of ADDED.
- 3. A lab specified, per analyte bias. The bias changes the center of the computed limits.
- * The second limits are protocol defined upper and lower QC limits for the recovery.
- * The recovery is underlined if it is outside either of these ranges.

REPORT GUIDES
Page 7
SUMMARY DATA SECTION
Page 27

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>04/11/12</u>

1

5

6

9

11

12

Ш

SDG 8602

SDG 8602 Contact Joseph Verville

REPORT GUIDE

Client <u>Test America</u>, <u>Inc.</u> Contract <u>44002624</u>

DUPLICATE

The Duplicate Report shows all results, differences and primary supporting information for one Duplicate and associated Original sample.

The following notes apply to this report:

* All fields in common with the Data Sheet Report have similar usage. This applies both to the Duplicate and Original sample data. Refer to the Data Sheet Report Guide for details.

If the Duplicate has data for a TEST and the lab did not do this test to the Original, the Original's RESULTs are underlined.

* The RPD (Relative Percent Difference) is the absolute value of the difference of the RESULTs divided by their average expressed as a percent.

If both RESULTs are less than their MDAs, no RPD is computed and a '-' is printed.

For an analyte, if the lab did work for both samples but has data for only one, the MDA from the sample with data is used as the other's result in the RPD.

* The first, computed limit is the sum, as square root of sum of squares, of the errors of the results divided by the average result as a percent, hence the relative error of the difference rather than the error of the relative difference. The errors include those introduced by rounding the RESULTs prior to printing.

If this limit is labeled TOT, it includes the preparation error in the RESULTs. If labeled CNT, it does not.

This value reported for this limit is at most 999.

- * The second limit for the RPD is the larger of:
 - 1. A fixed percentage specified in the protocol.

REPORT GUIDES
Page 8
SUMMARY DATA SECTION
Page 28

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>04/11/12</u>

4

5

7

10

111

SDG 8602

SDG <u>8602</u>
Contact <u>Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract 44002624

DUPLICATE

- 2. A protocol factor (typically 2) times the average MDA as a percent of the average result. This limit applies when the results are close to the MDAs.
- * The RPD is underlined if it is greater than either limit.
- * If specified by the lab, the second limit column is replaced by the Difference Error Ratio (DER), which is the absolute value of the difference of the results divided by the quadratic sum of their one sigma errors, the same errors as used in the first limit.

Except for differences due to rounding, the DER is the same as the RPD divided by the first RPD limit with the limit scaled to 1 sigma.

* The DER is underlined if it is greater than the sigma factor, typically 2 or 3, shown in the header for the first RPD limit.

REPORT GUIDES
Page 9
SUMMARY DATA SECTION
Page 29

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06
Report date 04/11/12

3

6

0

9

11

12

K

SDG 8602

SDG <u>8602</u> Contact Joseph Verville

REPORT GUIDE

Client <u>Test America, Inc.</u> Contract 44002624

MATRIX SPIKE

The Matrix Spike Report shows all results, recoveries and primary supporting information for one Matrix Spike and associated Original sample.

The following notes apply to this report:

* All fields in common with the Data Sheet Report have similar usage. This applies both to the Spiked and Original sample data. Refer to the Data Sheet Report Guide for details.

If the Spike has data for a TEST and the lab did not do this test to the Original, the Original's RESULTs are underlined.

* An amount ADDED is the lab's value for the actual amount spiked into the Spike sample with its ERROR an estimate of the error of this amount.

An amount is underlined if its ratio to the corresponding RDL is outside protocol specified limits.

- * REC (Recovery) is the Spike RESULT minus the Original RESULT divided by ADDED expressed as a percent.
- * The first, computed limits for the recovery reflect:
 - 1. The errors of the two RESULTs, including those introduced by rounding them prior to printing.

If the limits are labeled (TOTAL), they include preparation error in the result. If labeled (COUNT), they do not.

- 2. The error of ADDED.
- 3. A lab specified, per analyte bias. The bias changes the center of the computed limits.
- * The second limits are protocol defined upper and lower QC limits for the recovery.

REPORT GUIDES
Page 10
SUMMARY DATA SECTION
Page 30

Lab id <u>EAS</u>

Protocol <u>TA</u>

Version <u>Ver 1.0</u>

Form <u>DVD-RG</u>

Version <u>3.06</u>

Report date <u>04/11/12</u>

4

__

6

8

9

11

12

Ц

SDG 8602

SDG <u>8602</u>
Contact <u>Joseph Verville</u>

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>44002624</u>

MATRIX SPIKE

These limits are left blank if the Original RESULT is more than a protocol defined factor (typically 4) times ADDED. This is a way of accounting for that when the spike is small compared to the amount in the original sample, the recovery is unreliable.

* The recovery is underlined (out of spec) if it is outside either of these ranges.

REPORT GUIDES
Page 11
SUMMARY DATA SECTION
Page 31

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06
Report date 04/11/12

5

6

8

10

11

SDG 8602

SDG 8602 Contact Joseph Verville

REPORT GUIDE

Client Test America, Inc. Contract 44002624

METHOD SUMMARY

The Method Summary Report has two tables. One shows up to five results measured using one method. The other has performance data for the method. There is one report for each TEST, as used on the Data Sheet Report.

The following notes apply to this report:

* Each table is subdivided into sections, one for each preparation batch. A preparation batch is a group of aliquots prepared at roughly the same time in one work area of the lab using the same method.

There should be Lab Control Sample and Method Blank results in each preparation batch since this close correspondence makes the QC meaningful. Depending on lab policy, Duplicates need not occur in each batch since they QC sample dependencies such as matrix effects.

The RAW TEST column shows the test code used in the raw data to identify a particular analysis if it is different than the test code in the header of the report. This occurs in special cases due to method specific details about how the lab labels work.

The Lab Sample or Planchet ID combined with the (Raw) Test Code and Suffix uniquely identify the raw data for each analysis.

If a result is less than both its MDA and RDL, it is replaced by just 'U' on this report. If it is greater than or equal to the RDL but less than the MDA, the result is shown with a 'U' flag.

The J and X flags are as on the data sheet.

- * Non-U results for Method Blanks are underlined to indicate possible contamination of other samples in the preparation batch. The Method Blank Report has supporting data.
- * Lab Control Sample and Matrix Spike results are shown as: ok, No data, LOW or HIGH, with the last two underlined. 'No data' means no amount ADDED was specified. 'LOW' and 'HIGH'

REPORT GUIDES Page 12 SUMMARY DATA SECTION Page 32

Lab id EAS Protocol TA Version Ver 1.0 Form DVD-RG Version 3.06 Report date 04/11/12

SDG 8602

SDG <u>8602</u> Contact Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract 44002624

METHOD SUMMARY

correspond to when the recovery is underlined on the Lab Control Sample or Matrix Spike Report. See these reports for supporting data.

- * Duplicate sample results are shown as: ok, No data, or OUT, with the last two underlined. 'No data' means there was no original sample data found for this duplicate. 'OUT' corresponds to when the RPD is underlined on the Duplicate Report. See this report for supporting data.
- * If the MDA column is labeled 'MAX MDA', there was more than one result measured by the reported method and the MDA shown is the largest MDA. If not all these results have the same RDL, the MAX MDA reflects only those results with RDL equal to the smallest one.

MDAs are underlined if greater than the printed RDL.

- * Aliquots are underlined if less than the nominal value specified for the method.
- * Prepareation factors are underlined if greater than the nominal value specified for the method.
- * Dilution factors are underlined if greater than the nominal value specified for the method.
- * Residues are underlined if outside the range specified for the method. Residues are not printed if yields are.
- * Yields, which may be gravimetric, radiometric or some type of recovery depending on the method, are underlined if outside the range specified for the method.
- * Efficiencies are underlined if outside the range specified for the method. Efficiencies are detector and geometry dependent so this test is only approximate.
- * Count times are underlined if less than the nominal value

REPORT GUIDES
Page 13
SUMMARY DATA SECTION
Page 33

Lab id <u>EAS</u>
Protocol <u>TA</u>
Version <u>Ver 1.0</u>
Form <u>DVD-RG</u>
Version <u>3.06</u>
Report date <u>04/11/12</u>

1

6

8

9

11

12

1,

SDG 8602

SDG 8602
Contact Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u> Contract <u>44002624</u>

METHOD SUMMARY

specified for the method.

- * Resolutions (as FWHM; Full Width at Half Max) are underlined if greater than the method specified limit.
- * Tracer drifts are underlined if their absolute values are greater than the method specified limit. Tracer drifts are not printed if percent moistures are.
- * Days Held are underlined if greater than the holding time specified in the protocol.
- * Analysis dates are underlined if before their planchet's preparation date or, if a limit is specified, too far after it.

For some methods, ratios as percentages and error estimates for them are computed for pairs of results. A ratio column header like '1÷3' means the ratio of the first result column and the third result column.

Ratios are not computed for Lab Control Sample, Method Blank or Matrix Spike results since their matrices are not necessarily similar to client samples'.

The error estimate for a ratio of results from one planchet reflects only counting errors since other errors should be correlated. For a ratio involving different planchets, if QC limits are computed based on total errors, the error for the ratio allows for the preparation errors for the planchets.

The ratio is underlined (out of spec) if the absolute value of its difference from the nominal value is greater than its error estimate. If no nominal value is specified, this test is not done.

For Gross Alpha or Gross Beta results, there may be a column showing the sum of other Alpha or Beta emitters. This sum includes all relevant results in the DVD database, whether reported or not. Results in the sum are weighted by a particles/decay value specified by the lab for each relevant analyte. Results less than their MDA are not included.

REPORT GUIDES
Page 14
SUMMARY DATA SECTION
Page 34

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06
Report date 04/11/12

4

5

0

8

10

11

SDG 8602

SDG 8602 Contact Joseph Verville

GUIDE, cont.

Client <u>Test America, Inc.</u>
Contract <u>44002624</u>

METHOD SUMMARY

No sums are computed for Lab Control, Method Blank or Matrix Spike samples since their various planchets may not be physically related.

If a ratio of total isotopic to Gross Alpha or Beta is shown, the error for the ratio reflects both the error in the Gross result and the sum, as square root of sum of squares, of the errors in the isotopic results.

For total elemental uranium or thorium results, there may be a column showing the total weight computed from associated isotopic results. Ignoring results less than their MDAs, this is a weighted sum of the isotopic results. The weights depend on the molecular weight and half-life of each isotope so as to convert activities (decays) to weight (atoms).

If a ratio of total computed to measured elemental uranium or thorium is shown, the error for the ratio reflects the errors in all the measurements.

REPORT GUIDES
Page 15
SUMMARY DATA SECTION
Page 35

Lab id EAS
Protocol TA
Version Ver 1.0
Form DVD-RG
Version 3.06
Report date 04/11/12

3

4

6

8

10

11

12

>
Ξ.
Œ
Ç
<u></u>
Φ
<u></u>
_
-
-
S

TestAmerica Irvine 17461 Derian Ave Suite 100 Irvine, CA 92614-5817 Phone (949) 261-1022 Fax (949) 260-3297

7110118 (343) 201-1022 TaX (343) 200-3237												Ì		
Client Information (Sub Contract Lab)	sampier.		Lab PM: Wilson, Debby	Debby				<u> </u>	amer Tra	Camer Tracking No(s)	: :	0 4	COC No: 440-2808,1	
Client Contact: Shipping/Receiving	Phane:		E-Mail: debby.wilson@testamericainc.com	/ilson@t	estamer	icainc.c	mo mo			•		ia ir	Page: Page 1 of 1	
Company:								١,				-	Job #:	
Eberline Services						Ā	Analysis	Redu	Requested			4	440-5832-1	
Address: 2030 Wright Avenue, ,	Due Date Requested: 4/2/2012												Preservation Codes	Sodes:
City: Richmond	TAT Requested (days):												N- HCL N- NaOH	M - Hexane N - None
State, 21c. CA, 94804	1		/a - 21					L					D - Nitric Acid E - NaHSO4	Q - Na2O4S Q - Na2SO3
Phone:	PO#:						p	C2-13					F - MeOH G - Amchlor	
Email:	WO#		OK-20	market and a second	bənidn		anidme	c K-40					H - Ascorbic Aci I - Ice J - Di Water	
Project Name: Annual Outfalls 009	Project #: 44002624		\$ 9 ,();9	MCcommodulous				эд2 вп				And the section of the second	K-EDTA L-EDA	W - ph 4-5 Z - other (specify)
Site. Boeing SSFL	SSOW#:		dwes					imsə /				The printing of the	Other:	
	0)		Matrix (ed (www.ler, Sasolid, od owaste/oil, ed)	MisM mode TOASTNOOEL	TOARTNOORL TOARTNOORL	гэаятиоэвг	TOARTNOOBL	тэаятиоэві				aedmuN leto T		
Sample restriction - Cient ID (Lab ID)	Sample Date Time	G=grab)	20000	7556E	San	3333	62505	4000				ıı X	Specia	Special Instructions/Note:
Outfall 009 (Composite) (440-5832-1)	Y	-	Water	×	<u> </u>	×	×	2	STREET, SE		Transfer State	22	99390	Verifical Bases and Architectures and
Trip Blank (440-5832-3)	3/19/12 18:03 Pacific		Water	×	×	×	×	×		<u> </u>				
1000														
							<u> </u> 							***
and department of the second o														
A ST CONTRACTOR OF THE PARTY OF														
The second secon														
The state of the s	·													
Possible Hazard Identification			•	Sample	Dispos	al (A fi	зе тау	be ass	pessed	fsamp	es are r	etainec	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	n 1 month)
Deliverable Requested: I, II, III, IV, Other (specify)				Special	Special Instructions/OC Requirements:	Client Sns/QC	Reduir	Ors	Disposal By Lab	y Lab		Archive	e ror	Months
		•												
nquished by:	Date:		Time	t					Metho	Method of Shipment:	nent:			
us and	Date/Time: 3/20/12	17:80	Company	Rece	Received by:	100	ΙX			Date		2011	Di	20 Company
Keinquished by:	Date/Time: *	ğ	Сотрану	Rece	Received by:	五	\$			Date	Date/Time:	3/21	(1 0920)	2 Company Chick
	Date/Fime:	<u>ŏ</u>	Company	Rece	Received by:			/		Date	Date/Time:	-		Сотрану
Custody Seals Intact: Custody Seal No. Δ Yes Δ No				Coole	Cooler Temperature(s) °C and Other Remarks.	ıture(s) °(Sand Ott	ter Reme	1.5	WELL	JUED	3		
					1	1	1	1					3	

RICHMOND, CA LABORATORY

SAMPLE RECEIPT CHECKLIST

Clien	t: VES	1 / Me	19 HD	_ City	7500	State	e <u>(A)</u>	
Date/	Time rece	ived 05/21/1	CoC N	vo. 440	-2808.1			
Conta	ainer I.D. N	lo. Ge CHES	Requeste	d TAT (Days) P.O. F	Received Yes	[] No[]	
				INSPE	CTION			
1.	Custod	y seals on ship	oping container i	intact?		Yes[x]	No[] N/A	[+]
2.	Custod	y seals on ship	pping container	dated & signe	ed?	,	No[] N/A	[]
3.	Custod	y seals on san	nple containers i	ntact?		,	No[] N/A	Market .
4.	Custod	y seals on san	nple containers	dated & signe	ed?		No [] N/A	
5.		ı material is:				Wet[]	Dry[]	/
ŝ.	Numbe	of samples in	shipping contai	iner:	Sample Mar	trix <u>W</u>		
7.	Numbe	of containers	per sample:		(Or see CoC	×)		
8.	Sample	s are in correc	t container	•	Yes [🗸]	No[]		
9.	Paperw	ork agrees wit	h samples?		Yes[x]	No[]		
10.	Sample	s have: Tap	e [] Hazard	labels [] I	Rad labels []	Appropriate sar	nple labels [🔨]]
11.	Sample	s are; In g	ood condition 🍞	[] Leakin	g[] Broker	Container []	Missing []
12.	Sample	s are: Preser	ved [⊀] Not p	reserved [×	JpH LD/NAPr	eservative 🙌 (03	
13.	Describ	e any anomali	es:	,		į.		
			any anomalies?		[] No [
15. Cus			•					
Cus Sam	Inspecte	ed by Beta/Gamma	Ion Chamber	Date: _	Tim- Customer	e:Beta/Gamma	Ion Chamber	wipe
Cus Sam	Inspecte stomer ple No.	Beta/Gamma	Ion Chamber	Date: _	Tim- Customer	e:Beta/Gamma	Ion Chamber	
Cus Sam	Inspecte stomer ple No.	Beta/Gamma	Ion Chamber	Date: _	Tim- Customer	e:Beta/Gamma	Ion Chamber	
5. Cus Sam	Inspecte stomer ple No.	Beta/Gamma	Ion Chamber	Date: _	Tim- Customer	e:Beta/Gamma	Ion Chamber	
5. Cus Sam	Inspecte stomer ple No.	Beta/Gamma	Ion Chamber	Date: _	Tim- Customer	e:Beta/Gamma	Ion Chamber	
5. Cus Sam	Inspecte stomer ple No.	Beta/Gamma	Ion Chamber	Date: _	Tim- Customer	e:Beta/Gamma	Ion Chamber	
5. Cus Sam	Inspecte stomer ple No.	Beta/Gamma	Ion Chamber	Date: _	Tim- Customer	e:Beta/Gamma	Ion Chamber	
5. Cus Sam	Inspecte stomer ple No.	Beta/Gamma	Ion Chamber	Date: _	Tim- Customer	e:Beta/Gamma	Ion Chamber	
Cus Sam	Inspecte stomer ple No.	Beta/Gamma	Ion Chamber	Date: _	Tim- Customer	e:Beta/Gamma	Ion Chamber	
Cus Sam	Inspecte stomer ple No.	Beta/Gamma	Ion Chamber	Date: _	Tim-	e:Beta/Gamma	Ion Chamber	
Sam	Inspecte stomer ple No.	Beta/Gamma	Ion Chamber	Date: _	Tim-	e:Beta/Gamma	Ion Chamber	
Cus Sam	Inspecte stomer ple No.	Beta/Gamma	Ion Chamber	Date: _	Tim-	e:Beta/Gamma	Ion Chamber	
Cus Sam	Inspected stomer ple No.	Beta/Gamma cpm	lon Chamber mR/hr	Wipe	Customer Sample No.	e: Beta/Gamma cpm	Ion Chamber mR/hr	wipe
Cus Sam	Inspected stomer ple No.	Beta/Gamma cpm	ion Chamber mR/hr	Wipe	Tim-	e: Beta/Gamma cpm	Ion Chamber mR/hr	wipe

Form SCP-02, 07-30-07

"over 55 years of quality nuclear services"

DATE:

April 4, 2012

CUSTOMER:

Test America-Irvine

17461 Derian Avenue, Suite 100

Irvine, CA 92614

ATTENTION:

Debby Wilson

REPORT NO:

149949

REFERENCE:

COC# 440-2712.1 JOB# 440-5832-1

SUBJECT:

ANALYSIS OF WATER SAMPLES FOR ASBESTOS BY TEM

ACCREDITATION:

California Dept. of Health Services ELAP 1119

The date and times of collection, UV-Ozone treatment and filtration are as follows:

SAMPLE NO:

Outfall 009 (Composite) (440-5832-1)

DATE COLLECTED:

March 18, 2012 at 0812

RECEIVED:

March 20, 2012 at 1125

THE PERSON NAMED IN THE PE

UV-Ozone Treatment:

March 20, 2012 1130 1430

FILTERED:

March 20, 2012 at 1447

DATE ANALYZED:

March 22, 2012

In the drinking water document, EPA 600 R 94 134, 100.2, samples are analyzed for fibers >10 um in length. The regulation calls for an MCL (maximum contaminant level) of 7 MFL (million of fibers per liter) and an analytical sensitivity of 0.2 MFL.

The analytical sensitivity of 0.2 MFL was not reached due to the turbidity of the sample.

The results of the analysis and the detection limit(s) are summarized on the following page(s), accompanied by the chain of custody.

Respectfully submitted, EMS Laboratories, Inc.

B.M. Kolk Laboratory Director

BMK/am

Note: The report shall not be reproduced, except in full without the written approval of EMS Laboratories, Inc.

Note: The results of the analysis are based upon the sample submitted to the laboratory. No representation is made regarding the sampling area other than that implied by the analytical results for the immediate vicinity of the samples analyzed as calculated from the data presented with those samples. All the analytical quality control data meet the requirement of the procedure unless otherwise indicated. Any deviation or exclusion from the test method is noted in this cover letter. Unless otherwise noted in this cover letter the samples were received properly packaged, clearly identified and intact.

2

5

4

5

b

6

9

13

ANALYSIS OF WATER FOR ASBESTOS BY TEM (EPA-600 R 94 134) EPA 100.2

LAB.NO.

149949

CLIENT: Test America, Irvine

		FILTER	MEDIA DATA			26 34	
Laboratory I.D.	Client 1.D.	Туре	Diameter mm	Effective Area mm ²	No. of G.O.	Analyzed Area, mm ²	Sample Volume (mL
149949-1	Outfall 009 (Composite) 440-5832-1	PC	47	1017	10	0.094	5
3-20-12-BL	EMS Blank	PC	47	1017	20	0.188	500

^{*} FOR FIBERS > 10µm ONLY

INDIVIDUAL ANALYTICAL RESULTS

Client I.D.	No of Asbestos Fibers	Detection Limit (MF/L)	Concentration MFI Fibers >10 µm
Outfall 009 (Composite)	ND	2.2	< 2.2
440-5832-1			
EMS Blank	ND	0.01	< 0.01
	I.D. Outfall 009 (Composite) 440-5832-1	I.D. Asbestos Fibers Outfall 009 (Composite) ND 440-5832-1	I.D. Asbestos Fibers Limit (MF/L) Outfall 009 (Composite) ND 2.2 440-5832-1

The analysis was carried out to the approved TEM method. This laboratory is in compliance with the quality specified by the method.

Authorized Signature

NA Not Applicable ND None Detected PC Polycarbonate Filter GO Grid Openings

MFL Million Fibers per Liter

Test America Version 7/19/2010

ALYSIS REQUIRED	Field readings: (Log in and include in report Temp and pH) Temp °F = SO	Time	Comments											Composite samples will follow and are to be added to this work order.	Turn-around time. (Check)	5 Day:	Sample Integrity: (Check) Intact: X On loe: X	Data Requirements: (Check) No Level IV:
ŇĀ,	lm off (25/00012)	(SM9221) Toxicity	ətusA								×	×	メ	oles will foll	73 \$ Turn-arou		Sample Intact;	
	521)	coliform (SM9.								×	^			te sam	Date/Time: 123	3-17-12	Date/Fime:	Date/Time:
		(8.812) (Cr (VI						×					mposi	Date	2	Date	Date
)S+A+A+ ⊅ S9				×		×						 - 1	1			
		sənəlyX ,4S3 ;			×		×					_		 n ever				
L	HEW)		<u> </u>	×	U	U	o	5C						storm	3	3	<u></u>	
			Bottle #	1A, 1B	2A, 2B, 2C	3A, 3B, 3C	4A, 4B, 4C	5A, 5B, 5	φ	7	œ	6	0/	9 for this	Received B	Ź	Received By	Received By
	NPDES 1 009 SW-13	: - 10	Preservative	HCI	HCI	None	HCI	None	None	Na2S203	Na2S2O3	None	NONE	Outfall 00	3-17-3012	5521	Oph)	
Project:	Boeing-SSFL NPDES Annual Outfall 009 GRAB Stormwater at SW-13	Phone Number: (626) 568-6691 Fax Number: (626) 568-6515	Sampling Date/Time											These Samples are the Grab Portion of Outfall 009 for this storm event.	ne: 3~/7-	~		ne:
			# of Cont.	7	m	0	60	က	-	-	1	-	-j-charactury	 the Gr	Date/Time:		Jate/Tin	Date/Time
	Suite 200 ct: Debby Wile	wyn Kelly gwyd 6 19	Container Type	1L Amber	VOAs	VOAs	VOAs	VOAs	500 mL Poly	125 mL Poly	125 mL Poly	1 Gal Cube	12000	mples are			Date/Time:	
ddress:	ia Ave, St 1007 Contact:	er. Bror	Sample Matrix	≥	W	W	Μ	Α	Α	≶	Μ	3	3	lese Sal	Ĭ		~	
Client Name/Address:	MWH-Arcadia 618 Michillinda Ave, Suite 200 Arcadia, CA 91007 Test America Contact: Debby Wilson	[g .∀	Sample Description	Ontfall 009	Ontfall 009	Outfall 009	Trip Blanks	Trip Blanks	Ontfall 009	Outfall 009	Outfall 009	Ontfall 009	001/1/1009	Ļ	Relinguished By		Relinquished By	Relinquished By

A COMMISSION OF SIZE 200 Commonts at W.S.13 Commont	Client Name/Address:	26		Project: Booing	ect:	משמט		-	-	-			ANAL	ANALYSIS REQUIRED	EQUIR	ED			
Phone Number: (2009) 686-6851		Suite 200		Ann	ual Outfal IPOSITE TWATER	1 009 WS-13			- aten	nam.	+ nonizsi(0), Total 8 (1.509							
Proton Number Proton Numbe	U	at: Debby Will	son							OHOLO L. L. C	Norpyrifos, D	, Sr-90 (905.) 226 (903.0 or 9), Uranim (9							Comments
1 2-1/2 2 2 2 2 2 2 2 2 2		onwyn Kelly 39×19616	-	Phot (626 Fax	ne Numbe) 568-669 Number:	<u> </u>		√, ТІ, Fе, АІ, ⁻		•	lo , ea/PCBs , Cl	(0.309) (2-H) S muibaЯ bər (904.0)	dd + (979)	STOING DOVIDES	· ·	e			
1. Poly 1 3-1/8-3-24/2 HNO3 10A X	1º ×		# of Cont.		ampling	Preservative	Bottle #	.'8 ,g⊦	 ,			muitinໄ iidmoC nuibe۶	SAOC	l leto l	COOSC	DinsyC			
11 Poly 1 14NO, 108 X X	_	_	-	+	TING 81		10A	4 ×	 	+			3	+	,				
11 Amber 2	>	1L Poly	-	1	*		108	×			-			Language Control	ļ.,_				
Soo nil Poby 2 None 12A, 12B X X X X X X X X X	3	1L Amber	2			None	11A, 11B		×					- The second of					à managraphic de
1.1 Amber 2		500 mL Poly	7			None	12A, 12B		<u> ^</u>										The state of the s
11 Amber 2 None 154 148 148 149 149 150 on 150 on 154 149 149 150 on 150	3	500 mL Poly	2			None	13A, 13B			×									
11	×	1L Amber	2			None	14A, 14B				×								
1. Anther 1	×	2.5 Gal Cube	-			None	15A					×		de la constanta					Unfiltered and unpreserved
1L Poly 1 None 16 16 16 16 16 16 16 1	\$	500 mL Amber			wegodychowk	Nane	15B			-		<		OFFICE DAYS AND ADDRESS OF THE PERSON NAMED IN COLUMN ASSESSMENT OF THE PERSON					analysis
1.L Poly 1 None 19 X X X X X X X X X	≥	1L Amber	2		and the second	None	16A, 16B						×	an orașe parte					
1.L Poly 1 Wone 18	*	4 Cel Poly	1			None	1					Maria de la companya						J	July test if first or second rai events of the year
1	≥	1L Poly	-		delay and the same of the same	None	18												Filter w/in 24hrs of receipt at lal
Stod mil. Poly 1 3 - 1 1 2 2 2 2 1 2 2 2	≥	1L Poly	-	original and a second		None	19							<u> </u>	×				
COC Page 2 of 2 list the Composite Samples for Outfall 009 for this storm event. These must be added to the same work order for COC Page 1 of 2 for Outfall 009 for the same event. 3-18-20/2 Received By Received By Received By Date/Time: COC Page 2 of 2 list the Composite Samples for Outfall 009 for this storm event. 3-18-20/2 Received By Date/Time: Received By Date/Time: Received By Date/Time: Received By Date/Time: AB Hour S Day: AB Hour S Day: AB Hour AB Level IV: AB Level IV: All Level IV: All Level IV:	×	500 mL Poly	ļ	Ēŋ.	000	NaOH	20									×			
COC Page 2 of 2 list the Composite Samples for Outfall 009 for this storm event. These must be added to the same work order for COC Page 1 of 2 for Outfall 009 for the same event. Received By Date/Time: Received By Date				,															
Hese must be added to the same work order for COC Page 1 of 2 for Outfall 009 for the same event. 3-18-2012 Received By Date/Time: Received By Date/												7 000 12 37			H_{i}				
3-18-20/2 Received By Date/Time: 7-7 8 7 Turn-around time: (Check) 1/10 Received By Date/Time: 5 Day: 1/10 A8 Hour				=	Sim asar	t be added	to the sar	me work	order f	or COC	Page	1 of 2 for Out	fall 000	orm ev	erii.	a event			
Received By Date/Time: Sample Integrity: (Check) Intact On to: Date/Time: All Level IV: All Level IV: All Level IV:		- N	Date/T	Time:	3-18-2	20/2	Received By	1		Date	a/Time:	127-8	7	Turn 24 H 48 H	around tir	ne: (Check	2 Hour:		5 Day:
Received By Date/Time: All Posts (Check) Received By All Level IV: All Level IV:		Preset	Date/T	Time:	7 (42)		Received By	3		Date	e/Time:	1 7 7	7	Sam	ple Integrif	y: (Check)			
All Level IV:		<u> </u>	Date/T				Received By			Date	A./Time:		CAN LAND		Requirem	ents: (Che	ck)		Ş
								7	/1		20	1	7	No L	evel IV:		II Level IV:	ž	PDES Level IV:

Login Sample Receipt Checklist

Client: MWH Americas Inc Job Number: 440-5816-1

Login Number: 5816 List Source: TestAmerica Irvine

List Number: 1 Creator: Perez, Angel

Creator: Perez, Angel		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	N/A	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	

_

4 4

12

13

Login Sample Receipt Checklist

Client: MWH Americas Inc Job Number: 440-5816-1

Login Number: 5832 List Source: TestAmerica Irvine

List Number: 1

Creator: Robb, Kathleen

Question	Answer Comment
Radioactivity either was not measured or, if measured, is at or below background	True
The cooler's custody seal, if present, is intact.	N/A
The cooler or samples do not appear to have been compromised or tampered with.	True
Samples were received on ice.	True
Cooler Temperature is acceptable.	True
Cooler Temperature is recorded.	True
COC is present.	True
COC is filled out in ink and legible.	True
COC is filled out with all pertinent information.	True
Is the Field Sampler's name present on COC?	True
There are no discrepancies between the sample IDs on the containers and the COC.	True
Samples are received within Holding Time.	True
Sample containers have legible labels.	True
Containers are not broken or leaking.	True
Sample collection date/times are provided.	True
Appropriate sample containers are used.	True
Sample bottles are completely filled.	True
Sample Preservation Verified.	N/A
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A
Multiphasic samples are not present.	True
Samples do not require splitting or compositing.	True
Residual Chlorine Checked.	N/A

А

5

6

8

4 4

12

13

APPENDIX G

Section 5

Outfall 009 – March 25, 2012 MEC^X Data Validation Report

DATA VALIDATION REPORT

Boeing SSFL NPDES

SAMPLE DELIVERY GROUP: 440-6513-1

Prepared by

MEC^X, LP 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title: Boeing SSFL NPDES

Contract Task Order: 1261.100D.00 Sample Delivery Group: 440-6513-1

Project Manager: B. Kelly Matrix: Water

QC Level: IV No. of Samples: 2

No. of Reanalyses/Dilutions: 0

Laboratory: TestAmerica-Irvine

Table 1. Sample Identification

Client ID	Laboratory ID	Sub-Laboratory ID	Matrix	Collected	Method
Outfall 009 Composite	440-6603-1	G2C280471-001, S203085-01	Water		1613B, 200.8. 900. 901.1, 903.1, 904, 905, 906, 245.1, ASTM D5174

II. Sample Management

No anomalies were observed regarding sample management. The samples in this SDG were received at the laboratory within the temperature limits of 4°C ±2°C. The temperature upon receipt was not noted by Eberline; however, due to the nonvolatile nature of the analytes, no qualifications were required. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the sample was couriered to TestAmerica-Irvine, custody seals were not necessary. Custody seals were not present on the cooler upon arrival at Eberline. Custody seals were not present on the cooler upon arrival at TestAmerica-West Sacramento. If necessary, the client ID was added to the sample result summary by the reviewer.

1

Data Qualifier Reference Table

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins or PCB congeners.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Qualification Code Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
Α	Not applicable.	ICP Serial Dilution %D were not within control limits.
M	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

 DATA VALIDATION REPORT
 Project:
 SSFL NPDES

 DATO VALIDATION REPORT
 SDG:
 440-6513-1

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Р	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
* , *	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: L. Calvin

Date Reviewed: April 19, 2012

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The water sample was extracted and analyzed within one year of collection.
- Instrument Performance: Instrument performance criteria were met. Following are findings associated with instrument performance.
 - OC Column Performance: A Windows Defining Mix (WDM) containing the first and last eluting congeners of each descriptor and isomer specificity compounds was analyzed prior to the initial calibration sequence and at the beginning of each analytical sequence. The GC column performance in the calibrations was acceptable, with the height of the valley between the closely eluting isomers and 2,3,7,8-TCDD reported as less than 25%.
 - Mass Spectrometer Performance: The mass spectrometer performance was acceptable with the static resolving power greater than 10,000.
- Calibration: Calibration criteria were met.
 - o Initial Calibration: Initial calibration criteria were met. The initial calibration was acceptable with %RSDs ≤20% for the 15 native compounds (calibration by isotope dilution) and ≤35% for the two native and all labeled compounds (calibration by internal standard). The relative retention times and ion abundance ratios were within the Method 1613 QC limits for all standards.
 - Continuing Calibration: Calibration verification (VER) consisted of a mid-level standard (CS3) analyzed at the beginning of each analytical sequence. The VERs were acceptable with the concentrations within the acceptance criteria listed in Table 6 of EPA Method 1613. The ion abundance ratios and relative retention times were within the method QC limits.
- Blanks: The method blank had detects above the EDL for OCDD, 1,2,3,4,6,7,8-HpCDD and total HpCDD, and a reported detect below the EDL for OCDF. OCDD and OCDF were reported as EMPCs in the method blank; however, the reviewer deemed it appropriate to use all method blank results to qualify sample results. The sample result for OCDF below the reporting limit was qualified as nondetected, "U," at the level of

contamination. Remaining method blank detects were insufficient to qualify the sample results.

- Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - o Field Duplicates: This SDG had no identified field duplicate samples.
- Internal Standards Performance: The labeled internal standard recoveries for the sample were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Compound identification was verified. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Compound quantitation was verified by recalculating any sample detects and a representative number of blank spike concentrations. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J." Any detects reported between the estimated detection limit (EDL) and the reporting limit (RL) were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Nondetects are valid to the EDL.

B. EPA METHODS 200.8 and 245.1—Metals and Mercury

Reviewed By: P. Meeks

Date Reviewed: April 18, 2012

The sample listed in Table 1 for these analyses was validated based on the guidelines outlined in the MEC^X Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 200.8 and 245.1, and the National Functional Guidelines for Inorganic Data Review (7/02).

• Holding Times: Analytical holding times, six months for ICP-MS metals and 28 days for mercury, were met.

 Tuning: The mass calibration and resolution checks criteria were met. All tuning solution %RSDs were ≤5%, and all masses of interest were calibrated to ≤ 0.1 amu and ≤0.9 amu at 10% peak height.

- Calibration: Calibration criteria were met. Mercury initial calibration r² values were ≥0.995 and all initial and continuing calibration recoveries were within 90-110% for the ICP-MS metals and 85-115% for mercury. CRDL/CRI recoveries were within the control limits of 70-130%.
- Blanks: Method blanks and CCBs had no detects.
- Interference Check Samples: Recoveries were within control limits of 80-120%. Copper and cadmium were detected in the ICSA at concentrations above the reporting limit. The reviewer could not determine if these detections were due to standard contamination.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed on the sample in this SDG.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on the total and dissolved 200.8 analytes. Recoveries and RPDs were within laboratory-established QC limits.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: All sample internal standard intensities were within 60-125% of the internal standard intensities measured in the initial calibration.
- Sample Result Verification: Calculations were verified and the sample results reported on
 the sample result summary were verified against the raw data. No transcription errors or
 calculation errors were noted. When the sample results were qualified and the reviewer
 was able to clearly determine bias, detected results were qualified as either "J+" or "J-";
 otherwise, bias was not indicated in the qualification. Any detects between the method
 detection limit and the reporting limit were qualified as estimated, "J," and coded with
 "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the
 MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples.
 Following are findings associated with field QC samples:

 Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.

Field Duplicates: There were no field duplicate samples identified for this SDG.

C. VARIOUS EPA METHODS — Radionuclides

Reviewed By: P. Meeks

Date Reviewed: April 27, 2012

The samples listed in Table 1 for these analyses were validated based on the guidelines outlined in the *EPA Methods* 900.0, 901.1, 903.1, 904.0, 905.0, and 906.0, ASTM Method D-5174, and the National Functional Guidelines for Inorganic Data Review (10/04).

- Holding Times: The tritium sample was analyzed within 180 days of collection. All remaining aliquots were preserved within the five-day holding time.
- Calibration: The laboratory calibration information included the standard certificates and applicable preparation/dilutions logs for NIST-traceability.

Detector efficiencies were greater than 20%. The tritium aliquot was spiked for efficiency determination; therefore, no calibration was necessary. All chemical yields were at least 40% and were considered acceptable. The gamma spectroscopy analytes were determined at the maximum photopeak energy. The kinetic phosphorescence analyzer (KPA) was calibrated immediately prior to the sample analysis. All KPA calibration check standard recoveries were within 90-110% and were deemed acceptable.

- Blanks: There were no analytes detected in the method blanks or the KPA CCBs.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished control limits.
- Laboratory Duplicates: Laboratory duplicate analyses were performed on the sample in this SDG for all analytes. All RPDs were within the laboratory-established control limits.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed for the sample in this SDG. Method accuracy was evaluated based on the LCS results.
- Sample Result Verification: An EPA Level IV review was performed for the sample in this data package. The sample results and MDAs reported on the sample result form were verified against the raw data and no calculation or transcription errors were noted. Any detects between the MDA and the reporting limit were qualified as estimated, "J," and coded with "DNQ," in order to comply with the NPDES permit. Reported nondetects are valid to the MDA. Total uranium, normally reported in aqueous units, was converted to pCi/L using the conversion factor of 0.67 for naturally occurring uranium.

 Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

- Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
- o Field Duplicates: There were no field duplicate samples identified for this SDG.

Validated Sample Result Forms 440-6513-1

Analysis Method 1613B

Validation Level: IV Sample Name Outfall 009 Composite Matrix Type: Water **Sample Date:** 3/25/2012 5:48:00 PM 440-6603-1 Lab Sample Name: Analyte CAS No Result RL**MDL** Result Lab Validation Validation Qualifier Value Units **Qualifier Notes** 1,2,3,4,6,7,8-HpCDD 35822-46-9 0.00011 0.000050 0.0000036 В ug/L 1,2,3,4,6,7,8-HpCDF 67562-39-4 0.000028 0.000050 0.0000038 ug/L DNQ 1,2,3,4,7,8,9-HpCDF U 55673-89-7 ND 0.000050 0.0000056 1,2,3,4,7,8-HxCDD 39227-28-6 U ND 0.000050 0.0000033 ug/L 1,2,3,4,7,8-HxCDF 70648-26-9 ND 0.000050 0.0000046 U ug/L 1,2,3,6,7,8-HxCDD 57653-85-7 0.000005 0.000050 0.0000028 ug/L J J **DNQ** U 1,2,3,6,7,8-HxCDF 57117-44-9 ND 0.000050 0.0000042 ug/L 1,2,3,7,8,9-HxCDD 19408-74-3 0.000004 0.000050 J J DNQ 0.0000027 ug/L 1,2,3,7,8,9-HxCDF 72918-21-9 0.000050 0.0000061 U ug/L 1,2,3,7,8-PeCDD 40321-76-4 ND 0.000050 0.0000067ug/L U 1,2,3,7,8-PeCDF 57117-41-6 ND 0.000050 0.0000070 U ug/L 2,3,4,6,7,8-HxCDF 60851-34-5 ND 0.0000500.0000043ug/L U 2,3,4,7,8-PeCDF 57117-31-4 ND 0.000050U 0.0000070 ug/L 2,3,7,8-TCDD 1746-01-6 ND 0.000010 0.0000037U ug/L 2,3,7,8-TCDF 51207-31-9 ND 0.000010 0.0000063 ug/L U OCDD 3268-87-9 0.0012 0.00010 0.000013В ug/L OCDF 39001-02-0 ND 0.00010 0.0000044 ug/L JВ U В Total HpCDD 37871-00-4 0.00029 0.000050 0.0000036 В ug/L Total HpCDF 38998-75-3 J DNQ $0.000070\ 0.000050$ 0.0000046J Total HxCDD 34465-46-8 0.000030 0.000050 0.0000029ug/L J DNQ Total HxCDF 55684-94-1 0.000019 0.000050 0.0000047ug/L J DNO Total PeCDD 36088-22-9 U ND 0.000050 0.0000067ug/L Total PeCDF 30402-15-4 ND U 0.0000500.0000070ug/L Total TCDD 41903-57-5 ND 0.000010 0.0000037ug/L U Total TCDF U

Friday, April 27, 2012 Page 1 of 3

55722-27-5

ND

0.000010

0.0000063

Analysis Method 200.8

Sample Name	Outfall 009 C	omposite	Matri	x Type:	Water	V	alidation Le	vel: IV
Lab Sample Name:	440-6603-1	Sam	ple Date:	3/25/2012	2 5:48:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Antimony	7440-36-0	0.51	2.0	0.30	ug/L	J,DX	J	DNQ
Antimony, Dissolved	7440-36-0	0.39	2.0	0.30	ug/L	J,DX	J	DNQ
Cadmium	7440-43-9	0.12	1.0	0.10	ug/L	J,DX	J	DNQ
Cadmium, Dissolved	7440-43-9	ND	1.0	0.10	ug/L		U	
Copper	7440-50-8	5.1	2.0	0.50	ug/L			
Copper, Dissolved	7440-50-8	3.2	2.0	0.50	ug/L			
Lead	7439-92-1	7.2	1.0	0.20	ug/L			
Lead, Dissolved	7439-92-1	0.76	1.0	0.20	ug/L	J,DX	J	DNQ
Thallium	7440-28-0	ND	1.0	0.20	ug/L		U	
Thallium, Dissolved	7440-28-0	ND	1.0	0.20	ug/L		U	
Analysis Method	d 245.1							
Sample Name	Outfall 009 C	omposite	Matri	x Type:	Water	V	alidation Le	vel: IV
Lab Sample Name:	440-6603-1	Sam	ple Date:	3/25/2012	2 5:48:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Mercury	7439-97-6	ND	0.20	0.10	ug/L		U	
Mercury, Dissolved	7439-97-6	ND	0.20	0.10	ug/L		U	
Analysis Method	d Gamn	na Spec	c K-40	CS-13	7			
Sample Name	Outfall 009 C	omposite	Matri	x Type:	Water	V	alidation Le	vel: IV
Lab Sample Name:	440-6603-1	Sam	ple Date:	3/25/2012	2 5:48:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Cesium-137	10045973	-0.34	pCi/L	1.7	U	0	U	
Potassium-40	13966002	7.55	pCi/L	16	U	0	U	
Analysis Method	d Gross	Alpha	and Be	eta				
Sample Name	Outfall 009 C	omposite	Matri	x Type:	Water	V	alidation Le	vel: IV
Lab Sample Name:	440-6603-1	Sam	ple Date:	3/25/2012	2 5:48:00 PM			
				MDI	Dogult	Lab	¥7 10 1 40	37.19.1.49.
Analyte	CAS No	Result Value	RL	MDL	Result Units	Qualifier	Validation Qualifier	Notes
Analyte Gross Alpha	12587461		RL pCi/L	0.65				Validation Notes DNQ

Friday, April 27, 2012 Page 2 of 3

Analysis Method Radium 226

Sample Name	Outfall 009 C	composite	Matri	x Type:	Water	V	alidation Le	vel: IV
Lab Sample Name:	440-6603-1	Sam	ple Date:	3/25/201	2 5:48:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Radium-226	13982633	0.026	pCi/L	0.27	U	0	U	
Analysis Metho	d Radii	ım 228						
Sample Name	Outfall 009 C	omposite	Matri	x Type:	Water	V	alidation Le	vel: IV
Lab Sample Name:	440-6603-1	Sam	ple Date:	3/25/201	2 5:48:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Radium-228	15262201	0.114	pCi/L	0.15	U	0	U	
Analysis Metho	d Stron	tium 90)					
Sample Name	Outfall 009 C	omposite	Matri	x Type:	Water	\	alidation Le	vel: IV
Lab Sample Name:	440-6603-1	Sam	ple Date:	3/25/201	2 5:48:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Strontium-90	10098972	-0.094	pCi/L	0.43	U	0	U	
Analysis Metho	od Tritiu	ım						
Sample Name	Outfall 009 C	Composite	Matri	x Type:	Water	Validation Level: IV		
Lab Sample Name:	440-6603-1	Sam	ple Date:	3/25/201	2 5:48:00 PM			
Analyte	CAS No	Result Value	RL	MDL	Result Units	Lab Qualifier	Validation Qualifier	Validation Notes
Tritium	10028178	9.52	pCi/L	95	U	0	U	
Analysis Metho	d Uran	ium, Co	ombine	d				
Sample Name	Outfall 009 C	Composite	Matri	x Type:	Water	V	alidation Le	vel: IV
Lab Sample Name:	440-6603-1	Sam	ple Date:	3/25/201	2 5:48:00 PM			
Analyte	CAS No	Result	RL	MDL	Result	Lab	Validation	Validation
inary ec		Value			Units	Qualifier	Qualifier	Notes

Friday, April 27, 2012 Page 3 of 3