APPENDIX G

Section 38

Outfall 011, February 16, 2009 Test America Analytical Laboratory Report

LABORATORY REPORT

Prepared For: MWH-Pasadena/Boeing Project: Annual Outfall 011

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly Sampled: 02/16/09

Received: 02/16/09

Issued: 03/18/09 10:48

NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

SUBCONTRACTED: Refer to the last page for specific subcontract laboratory information included in this report.

ADDITIONAL

INFORMATION: This report includes 608 Alpha BHC data from a secondary source for confirmation purposes due to

contamination in the primary laboratory. Please see corrective action.

LABORATORY IDCLIENT IDMATRIXISB1802-01Outfall 011WaterISB1802-02Trip BlanksWater

Reviewed By:

TestAmerica Irvine

Joseph Dock

THE LEADER IN ENVIRONMENTAL TESTING 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Project

Project ID: Annual Outfall 011

Sampled: 02/16/09

Arcadia, CA 91007

Report Number: ISB1802

Received: 02/16/09

CORRECTIVE ACTION REPORT

Department: Extractions Date: 02/26/2009

Method: EPA 608 Matrix: Water

QC Batch: 9B20074

Identification and Definition of Problem:

Alpha-BHC was reported as a false positive for samples in batches 9B12048, 9B20074 and 9B23113.

Determination of the Cause of the Problem:

A cause for the error was due to laboratory/equipment contamination during extraction process.

Corrective Action Taken:

The rinsing system for glassware using acid rinse has been established to prevent future carry over from contamination. Also glassware has been ordered as immediate response to solve this issue. All samples were re-extracted and re-analyzed to confirm the contamination level. Samples ISB0755-01, ISB0825-01, ISB1699-01 and ISB1703-01 were re-extracted past the method holding time. All other samples were re-extracted within the holding time. Only samples ISB1699-01, ISB1786-01, ISB1787-01 and ISB2105-01 remained as positive hits. Both results are reported with Corrective Action Report.

Quality Assurance Approval:

Rima Angkasa

TestAmerica Irvine

Date: 03/09/2009 12:36 PM

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 011

618 Michillinda Avenue, Suite 200 Sampled: 02/16/09

Arcadia, CA 91007 Report Number: ISB1802 Received: 02/16/09

Attention: Bronwyn Kelly

MWH-Pasadena/Boeing

EXTRACTABLE FUEL HYDROCARBONS (CADHS/8015 Modified)

			MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: ISB1802-01 (Outfall 011 - Wat	ter)								
Reporting Units: mg/l									
DRO (C13 - C28)	EPA 8015B	9B19076	0.047	0.094	ND	0.943	02/19/09	02/20/09	
Surrogate: n-Octacosane (40-125%)					74 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 011

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007

Report Number: ISB1802

Sampled: 02/16/09

Received: 02/16/09

Attention: Bronwyn Kelly

VOLATILE FUEL HYDROCARBONS (EPA 5030/CADHS Mod. 8015)

			MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: ISB1802-01 (Outfall 011 - W	ater) - cont.								
Reporting Units: mg/l									
GRO (C4 - C12)	EPA 8015 Mod.	9B21002	0.025	0.10	ND	1	02/21/09	02/21/09	
Surrogate: 4-BFB (FID) (65-140%)					92 %				

MWH-Pasadena/Boeing

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 011

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007

Report Number: ISB1802

Sampled: 02/16/09

Received: 02/16/09

Arcadia, CA 91007 Report Number: ISB1802 Attention: Bronwyn Kelly

PURGEABLES BY GC/MS (EPA 624)

	1 0 1 1	CLIDEL		•	•	D:14:	D-4-	D-4-	Data
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Qualifiers
•		Daten	Limit	Limit	Kesuit	ractor	Extracteu	Anaiyzeu	Quantiters
Sample ID: ISB1802-01 (Outfall 011 - Water	er) - cont.								
Reporting Units: ug/l									
Benzene	EPA 624	9B17010	0.28	0.50	ND	1	02/17/09	02/17/09	
Bromodichloromethane	EPA 624	9B17010	0.30	0.50	ND	1	02/17/09	02/17/09	
Bromoform	EPA 624	9B17010	0.40	0.50	ND	1	02/17/09	02/17/09	
Bromomethane	EPA 624	9B17010	0.42	1.0	ND	1	02/17/09	02/17/09	
Carbon tetrachloride	EPA 624	9B17010	0.28	0.50	ND	1	02/17/09	02/17/09	
Chlorobenzene	EPA 624	9B17010	0.36	0.50	ND	1	02/17/09	02/17/09	
Chloroethane	EPA 624	9B17010	0.40	1.0	ND	1	02/17/09	02/17/09	
Chloroform	EPA 624	9B17010	0.33	0.50	ND	1	02/17/09	02/17/09	
Chloromethane	EPA 624	9B17010	0.40	0.50	ND	1	02/17/09	02/17/09	
Dibromochloromethane	EPA 624	9B17010	0.40	0.50	ND	1	02/17/09	02/17/09	
1,2-Dichlorobenzene	EPA 624	9B17010	0.32	0.50	ND	1	02/17/09	02/17/09	
1,3-Dichlorobenzene	EPA 624	9B17010	0.35	0.50	ND	1	02/17/09	02/17/09	
1,4-Dichlorobenzene	EPA 624	9B17010	0.37	0.50	ND	1	02/17/09	02/17/09	
1,1-Dichloroethane	EPA 624	9B17010	0.40	0.50	ND	1	02/17/09	02/17/09	
1,2-Dichloroethane	EPA 624	9B17010	0.28	0.50	ND	1	02/17/09	02/17/09	
1,1-Dichloroethene	EPA 624	9B17010	0.42	0.50	ND	1	02/17/09	02/17/09	
trans-1,2-Dichloroethene	EPA 624	9B17010	0.30	0.50	ND	1	02/17/09	02/17/09	
1,2-Dichloropropane	EPA 624	9B17010	0.35	0.50	ND	1	02/17/09	02/17/09	
cis-1,3-Dichloropropene	EPA 624	9B17010	0.22	0.50	ND	1	02/17/09	02/17/09	L
trans-1,3-Dichloropropene	EPA 624	9B17010	0.32	0.50	ND	1	02/17/09	02/17/09	
Ethylbenzene	EPA 624	9B17010	0.25	0.50	ND	1	02/17/09	02/17/09	
Methylene chloride	EPA 624	9B17010	0.95	1.0	ND	1	02/17/09	02/17/09	
1,1,2,2-Tetrachloroethane	EPA 624	9B17010	0.30	0.50	ND	1	02/17/09	02/17/09	
Tetrachloroethene	EPA 624	9B17010	0.32	0.50	ND	1	02/17/09	02/17/09	
Toluene	EPA 624	9B17010	0.36	0.50	ND	1	02/17/09	02/17/09	
1,1,1-Trichloroethane	EPA 624	9B17010	0.30	0.50	ND	1	02/17/09	02/17/09	
1,1,2-Trichloroethane	EPA 624	9B17010	0.30	0.50	ND	1	02/17/09	02/17/09	
Trichloroethene	EPA 624	9B17010	0.26	0.50	ND	1	02/17/09	02/17/09	
Trichlorofluoromethane	EPA 624	9B17010	0.34	0.50	ND	1	02/17/09	02/17/09	
Trichlorotrifluoroethane (Freon 113)	EPA 624	9B17010	0.50	5.0	ND	1	02/17/09	02/17/09	
Vinyl chloride	EPA 624	9B17010	0.40	0.50	ND	1	02/17/09	02/17/09	
Xylenes, Total	EPA 624	9B17010	0.90	1.5	ND	1	02/17/09	02/17/09	
Surrogate: 4-Bromofluorobenzene (80-120%)					88 %				
Surrogate: Dibromofluoromethane (80-120%					98 %				
Surrogate: Toluene-d8 (80-120%)	,				99 %				
					/ 0				

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 011

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007

Report Number: ISB1802

Sampled: 02/16/09

Received: 02/16/09

Attention: Bronwyn Kelly

MWH-Pasadena/Boeing

PURGEABLES BY GC/MS (EPA 624)

	1 0 1 1	OL: IDEL		`	•	D:14:	D-4-	D-4-	Data
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution	Date Extracted	Date Analyzed	Qualifiers
·		Daten	Limit	Limit	Kesuit	ractor	Extracteu	Anaiyzeu	Quamiers
Sample ID: ISB1802-02 (Trip Blanks - Wat	er)								
Reporting Units: ug/l									
Benzene	EPA 624	9B17010	0.28	0.50	ND	1	02/17/09	02/17/09	
Bromodichloromethane	EPA 624	9B17010	0.30	0.50	ND	1	02/17/09	02/17/09	
Bromoform	EPA 624	9B17010	0.40	0.50	ND	1	02/17/09	02/17/09	
Bromomethane	EPA 624	9B17010	0.42	1.0	ND	1	02/17/09	02/17/09	
Carbon tetrachloride	EPA 624	9B17010	0.28	0.50	ND	1	02/17/09	02/17/09	
Chlorobenzene	EPA 624	9B17010	0.36	0.50	ND	1	02/17/09	02/17/09	
Chloroethane	EPA 624	9B17010	0.40	1.0	ND	1	02/17/09	02/17/09	
Chloroform	EPA 624	9B17010	0.33	0.50	ND	1	02/17/09	02/17/09	
Chloromethane	EPA 624	9B17010	0.40	0.50	ND	1	02/17/09	02/17/09	
Dibromochloromethane	EPA 624	9B17010	0.40	0.50	ND	1	02/17/09	02/17/09	
1,2-Dichlorobenzene	EPA 624	9B17010	0.32	0.50	ND	1	02/17/09	02/17/09	
1,3-Dichlorobenzene	EPA 624	9B17010	0.35	0.50	ND	1	02/17/09	02/17/09	
1,4-Dichlorobenzene	EPA 624	9B17010	0.37	0.50	ND	1	02/17/09	02/17/09	
1,1-Dichloroethane	EPA 624	9B17010	0.40	0.50	ND	1	02/17/09	02/17/09	
1,2-Dichloroethane	EPA 624	9B17010	0.28	0.50	ND	1	02/17/09	02/17/09	
1,1-Dichloroethene	EPA 624	9B17010	0.42	0.50	ND	1	02/17/09	02/17/09	
trans-1,2-Dichloroethene	EPA 624	9B17010	0.30	0.50	ND	1	02/17/09	02/17/09	
1,2-Dichloropropane	EPA 624	9B17010	0.35	0.50	ND	1	02/17/09	02/17/09	
cis-1,3-Dichloropropene	EPA 624	9B17010	0.22	0.50	ND	1	02/17/09	02/17/09	L
trans-1,3-Dichloropropene	EPA 624	9B17010	0.32	0.50	ND	1	02/17/09	02/17/09	
Ethylbenzene	EPA 624	9B17010	0.25	0.50	ND	1	02/17/09	02/17/09	
Methylene chloride	EPA 624	9B17010	0.95	1.0	ND	1	02/17/09	02/17/09	
1,1,2,2-Tetrachloroethane	EPA 624	9B17010	0.30	0.50	ND	1	02/17/09	02/17/09	
Tetrachloroethene	EPA 624	9B17010	0.32	0.50	ND	1	02/17/09	02/17/09	
Toluene	EPA 624	9B17010	0.36	0.50	ND	1	02/17/09	02/17/09	
1,1,1-Trichloroethane	EPA 624	9B17010	0.30	0.50	ND	1	02/17/09	02/17/09	
1,1,2-Trichloroethane	EPA 624	9B17010	0.30	0.50	ND	1	02/17/09	02/17/09	
Trichloroethene	EPA 624	9B17010	0.26	0.50	ND	1	02/17/09	02/17/09	
Trichlorofluoromethane	EPA 624	9B17010	0.34	0.50	ND	1	02/17/09	02/17/09	
Trichlorotrifluoroethane (Freon 113)	EPA 624	9B17010	0.50	5.0	ND	1	02/17/09	02/17/09	
Vinyl chloride	EPA 624	9B17010	0.40	0.50	ND	1	02/17/09	02/17/09	
Xylenes, Total	EPA 624	9B17010	0.90	1.5	ND	1	02/17/09	02/17/09	
Surrogate: 4-Bromofluorobenzene (80-120%					87 %				
Surrogate: Dibromofluoromethane (80-120%					100 %				
Surrogate: Toluene-d8 (80-120%)	,				100 %				
S									

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 011

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007

Report Number: ISB1802

Sampled: 02/16/09

Received: 02/16/09

Attention: Bronwyn Kelly

PURGEABLES-- GC/MS (EPA 624)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ISB1802-01 (Outfall 011 - Wate	er)								P, pH
Reporting Units: ug/l									
Acrolein	EPA 624	9B19003	4.0	5.0	ND	1	02/19/09	02/19/09	P9
Acrylonitrile	EPA 624	9B19003	0.70	2.0	ND	1	02/19/09	02/19/09	
2-Chloroethyl vinyl ether	EPA 624	9B19003	1.8	5.0	ND	1	02/19/09	02/19/09	P9
Surrogate: 4-Bromofluorobenzene (80-120%))				97 %				
Surrogate: Dibromofluoromethane (80-120%)	<i>6)</i>				95 %				
Surrogate: Toluene-d8 (80-120%)					95 %				
Sample ID: ISB1802-02 (Trip Blanks - Wat	er)								
Reporting Units: ug/l									
Acrolein	EPA 624	9B18010	4.0	5.0	ND	1	02/18/09	02/18/09	C
Acrylonitrile	EPA 624	9B18010	0.70	2.0	ND	1	02/18/09	02/18/09	C
2-Chloroethyl vinyl ether	EPA 624	9B18010	1.8	5.0	ND	1	02/18/09	02/18/09	
Surrogate: 4-Bromofluorobenzene (80-120%))				89 %				
Surrogate: Dibromofluoromethane (80-120%)	<i>6)</i>				98 %				
Surrogate: Toluene-d8 (80-120%)					100 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Received: 02/16/09

Project ID: Annual Outfall 011

618 Michillinda Avenue, Suite 200 Sampled: 02/16/09 Report Number: ISB1802

Attention: Bronwyn Kelly

MWH-Pasadena/Boeing

Arcadia, CA 91007

PURGEABLES BY GC/MS, TENTATIVELY IDENTIFIED COMPOUNDS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ISB1802-01 (Outfall 011 - V	Vater)								
Reporting Units: ug/l									
Cyclohexane	EPA 624 (MOD.)	9B17010	N/A	2.5	ND	1	02/17/09	02/17/09	
freon 123a	EPA 624 (MOD.)	9B17010	N/A	2.5	ND	1	02/17/09	02/17/09	
Sample ID: ISB1802-02 (Trip Blanks -	Water)								
Reporting Units: ug/l									
Cyclohexane	EPA 624 (MOD.)	9B17010	N/A	2.5	ND	1	02/17/09	02/17/09	
freon 123a	EPA 624 (MOD.)	9B17010	N/A	2.5	ND	1	02/17/09	02/17/09	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 011

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007

Report Number: ISB1802

Sampled: 02/16/09
Received: 02/16/09

Attention: Bronwyn Kelly

1,4-DIOXANE BY DIRECT INJECTION GCMS - SINGLE ION MONITORING (SIM)

			MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: ISB1802-01 (Outfall 011 - W	ater)								
Reporting Units: ug/l									
1,4-Dioxane	EPA 8260B-SIM	9B19013	1.0	2.0	ND	1	02/19/09	02/19/09	
Surrogate: Dibromofluoromethane (80-12	0%)				99 %				

MWH-Pasadena/Boeing Project ID: Annual Outfall 011

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007

Report Number: ISB1802

Sampled: 02/16/09

Received: 02/16/09

Attention: Bronwyn Kelly

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ISB1802-01 (Outfall 011 - Water) - cont.								
Reporting Units: ug/l									
Acenaphthene	EPA 625	9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09	
Acenaphthylene	EPA 625	9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09	
Aniline	EPA 625	9B21046	0.28	9.4	ND	0.943	02/21/09	02/24/09	
Anthracene	EPA 625	9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09	
Benzidine	EPA 625	9B21046	N/A	4.7	ND	0.943	02/21/09	02/24/09	
Benzo(a)anthracene	EPA 625	9B21046	0.094	4.7	ND	0.943	02/21/09	02/24/09	
Benzo(a)pyrene	EPA 625	9B21046	0.094	1.9	ND	0.943	02/21/09	02/24/09	
Benzo(b)fluoranthene	EPA 625	9B21046	0.094	1.9	ND	0.943	02/21/09	02/24/09	
Benzo(g,h,i)perylene	EPA 625	9B21046	0.094	4.7	ND	0.943	02/21/09	02/24/09	
Benzo(k)fluoranthene	EPA 625	9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09	
Benzoic acid	EPA 625	9B21046	2.8	19	ND	0.943	02/21/09	02/24/09	
Benzyl alcohol	EPA 625	9B21046	0.094	4.7	ND	0.943	02/21/09	02/24/09	
4-Bromophenyl phenyl ether	EPA 625	9B21046	0.094	0.94	ND	0.943	02/21/09	02/24/09	
Butyl benzyl phthalate	EPA 625	9B21046	0.66	4.7	1.3	0.943	02/21/09	02/24/09	J, B
4-Chloro-3-methylphenol	EPA 625	9B21046	0.19	1.9	ND	0.943	02/21/09	02/24/09	
4-Chloroaniline	EPA 625	9B21046	0.094	1.9	ND	0.943	02/21/09	02/24/09	
Bis(2-chloroethoxy)methane	EPA 625	9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09	
Bis(2-chloroethyl)ether	EPA 625	9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09	
Bis(2-chloroisopropyl)ether	EPA 625	9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09	
Bis(2-ethylhexyl)phthalate	EPA 625	9B21046	1.6	4.7	ND	0.943	02/21/09	02/24/09	
2-Chloronaphthalene	EPA 625	9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09	
2-Chlorophenol	EPA 625	9B21046	0.19	0.94	ND	0.943	02/21/09	02/24/09	
4-Chlorophenyl phenyl ether	EPA 625	9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09	
Chrysene	EPA 625	9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09	
Dibenz(a,h)anthracene	EPA 625	9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09	
Dibenzofuran	EPA 625	9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09	
Di-n-butyl phthalate	EPA 625	9B21046	0.19	1.9	ND	0.943	02/21/09	02/24/09	
1,2-Dichlorobenzene	EPA 625	9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09	
1,3-Dichlorobenzene	EPA 625	9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09	
1,4-Dichlorobenzene	EPA 625	9B21046	0.19	0.47	ND	0.943	02/21/09	02/24/09	
3,3'-Dichlorobenzidine	EPA 625	9B21046	N/A	4.7	ND	0.943	02/21/09	02/24/09	
2,4-Dichlorophenol	EPA 625	9B21046	0.19	1.9	ND	0.943	02/21/09	02/24/09	
Diethyl phthalate	EPA 625	9B21046	0.094	0.94	0.26	0.943	02/21/09	02/24/09	J
2,4-Dimethylphenol	EPA 625	9B21046	0.28	1.9	ND	0.943	02/21/09	02/24/09	
Dimethyl phthalate	EPA 625	9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09	
4,6-Dinitro-2-methylphenol	EPA 625	9B21046	0.19	4.7	ND	0.943	02/21/09	02/24/09	
2,4-Dinitrophenol	EPA 625	9B21046	0.85	4.7	ND	0.943	02/21/09	02/24/09	
2,4-Dinitrotoluene	EPA 625	9B21046	0.19	4.7	ND	0.943	02/21/09	02/24/09	
2,6-Dinitrotoluene	EPA 625	9B21046	0.094	4.7	ND	0.943	02/21/09	02/24/09	
Di-n-octyl phthalate	EPA 625	9B21046	0.094	4.7	ND	0.943	02/21/09	02/24/09	
1,2-Diphenylhydrazine/Azobenzene	EPA 625	9B21046	0.094	0.94	ND	0.943	02/21/09	02/24/09	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 011

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007

Report Number: ISB1802

Sampled: 02/16/09

Received: 02/16/09

Attention: Bronwyn Kelly

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

			MDI	D	C1-	D!l4!	D-4-	D-4-	Data
Analyte	Method	Batch	MDL Limit	Reporting Limit	Result	Dilution Factor	Date Extracted	Date Analyzed	Qualifiers
Analyte	Witthou	Daten	Limit	Limit	Result	ractor	Extracted	Analyzeu	Quanners
Sample ID: ISB1802-01 (Outfall 011 - Wate	r) - cont.								
Reporting Units: ug/l									
Fluoranthene	EPA 625	9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09	
Fluorene	EPA 625	9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09	
Hexachlorobenzene	EPA 625	9B21046	0.094	0.94	ND	0.943	02/21/09	02/24/09	
Hexachlorobutadiene	EPA 625	9B21046	0.19	1.9	ND	0.943	02/21/09	02/24/09	
Hexachlorocyclopentadiene	EPA 625	9B21046	0.094	4.7	ND	0.943	02/21/09	02/24/09	
Hexachloroethane	EPA 625	9B21046	0.19	2.8	ND	0.943	02/21/09	02/24/09	
Indeno(1,2,3-cd)pyrene	EPA 625	9B21046	0.094	1.9	ND	0.943	02/21/09	02/24/09	
Isophorone	EPA 625	9B21046	0.094	0.94	0.094	0.943	02/21/09	02/24/09	J
2-Methylnaphthalene	EPA 625	9B21046	0.094	0.94	ND	0.943	02/21/09	02/24/09	
2-Methylphenol	EPA 625	9B21046	0.094	1.9	ND	0.943	02/21/09	02/24/09	
4-Methylphenol	EPA 625	9B21046	0.19	4.7	ND	0.943	02/21/09	02/24/09	
Naphthalene	EPA 625	9B21046	0.094	0.94	ND	0.943	02/21/09	02/24/09	
2-Nitroaniline	EPA 625	9B21046	0.094	4.7	ND	0.943	02/21/09	02/24/09	
3-Nitroaniline	EPA 625	9B21046	0.19	4.7	ND	0.943	02/21/09	02/24/09	
4-Nitroaniline	EPA 625	9B21046	0.47	4.7	ND	0.943	02/21/09	02/24/09	
Nitrobenzene	EPA 625	9B21046	0.094	0.94	ND	0.943	02/21/09	02/24/09	
2-Nitrophenol	EPA 625	9B21046	0.094	1.9	ND	0.943	02/21/09	02/24/09	
4-Nitrophenol	EPA 625	9B21046	2.4	4.7	ND	0.943	02/21/09	02/24/09	
N-Nitroso-di-n-propylamine	EPA 625	9B21046	0.094	1.9	ND	0.943	02/21/09	02/24/09	
N-Nitrosodimethylamine	EPA 625	9B21046	0.094	1.9	ND	0.943	02/21/09	02/24/09	
N-Nitrosodiphenylamine	EPA 625	9B21046	0.094	0.94	ND	0.943	02/21/09	02/24/09	
Pentachlorophenol	EPA 625	9B21046	0.094	1.9	1.5	0.943	02/21/09	02/24/09	J
Phenanthrene	EPA 625	9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09	
Phenol	EPA 625	9B21046	0.28	0.94	ND	0.943	02/21/09	02/24/09	
Pyrene	EPA 625	9B21046	0.094	0.47	ND	0.943	02/21/09	02/24/09	
1,2,4-Trichlorobenzene	EPA 625	9B21046	0.094	0.94	ND	0.943	02/21/09	02/24/09	
2,4,5-Trichlorophenol	EPA 625	9B21046	0.19	1.9	ND	0.943	02/21/09	02/24/09	
2,4,6-Trichlorophenol	EPA 625	9B21046	0.094	0.94	ND	0.943	02/21/09	02/24/09	
Surrogate: 2,4,6-Tribromophenol (40-120%)					73 %				
Surrogate: 2-Fluorobiphenyl (50-120%)					71 %				
Surrogate: 2-Fluorophenol (30-120%)					60 %				
Surrogate: Nitrobenzene-d5 (45-120%)					69 %				
Surrogate: Phenol-d6 (35-120%)					64 %				
Surrogate: Terphenyl-d14 (50-125%)					87 %				

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 011

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007

Report Number: ISB1802

Sampled: 02/16/09

Received: 02/16/09

Attention: Bronwyn Kelly

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyta	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution	Date Extracted	Date Analyzed	Data Oualifiers
Analyte	Method	Daten	Lillit	Lillit	Resuit	ractor	Extracted	Analyzeu	Qualifiers
Sample ID: ISB1802-01 (Outfall 011 - Wate	r) - cont.								
Reporting Units: ug/l									
4,4'-DDD	EPA 608	9B20074	0.0019	0.0047	ND	0.943	02/20/09	02/22/09	
4,4'-DDE	EPA 608	9B20074	0.0028	0.0047	ND	0.943	02/20/09	02/22/09	
4,4'-DDT	EPA 608	9B20074	0.0038	0.0094	ND	0.943	02/20/09	02/22/09	
Aldrin	EPA 608	9B20074	0.0014	0.0047	ND	0.943	02/20/09	02/22/09	
alpha-BHC	EPA 608	9B20074	0.0024	0.0094	0.012	0.943	02/20/09	02/22/09	N2
beta-BHC	EPA 608	9B20074	0.0038	0.0094	ND	0.943	02/20/09	02/22/09	
delta-BHC	EPA 608	9B20074	0.0033	0.0047	ND	0.943	02/20/09	02/22/09	
Dieldrin	EPA 608	9B20074	0.0019	0.0047	ND	0.943	02/20/09	02/22/09	
Endosulfan I	EPA 608	9B20074	0.0019	0.0047	ND	0.943	02/20/09	02/22/09	
Endosulfan II	EPA 608	9B20074	0.0028	0.0047	ND	0.943	02/20/09	02/22/09	
Endosulfan sulfate	EPA 608	9B20074	0.0028	0.0094	ND	0.943	02/20/09	02/22/09	
Endrin	EPA 608	9B20074	0.0019	0.0047	ND	0.943	02/20/09	02/22/09	
Endrin aldehyde	EPA 608	9B20074	0.0019	0.0094	ND	0.943	02/20/09	02/22/09	C
Endrin ketone	EPA 608	9B20074	0.0028	0.0094	ND	0.943	02/20/09	02/22/09	
gamma-BHC (Lindane)	EPA 608	9B20074	0.0028	0.019	ND	0.943	02/20/09	02/22/09	
Heptachlor	EPA 608	9B20074	0.0028	0.0094	ND	0.943	02/20/09	02/22/09	
Heptachlor epoxide	EPA 608	9B20074	0.0024	0.0047	ND	0.943	02/20/09	02/22/09	
Methoxychlor	EPA 608	9B20074	0.0033	0.0047	ND	0.943	02/20/09	02/22/09	
Chlordane	EPA 608	9B20074	0.038	0.094	ND	0.943	02/20/09	02/22/09	
Toxaphene	EPA 608	9B20074	0.24	0.47	ND	0.943	02/20/09	02/22/09	
Surrogate: Decachlorobiphenyl (45-120%)					77 %				
Surrogate: Decachlorobiphenyl (45-120%)					77 %				
Surrogate: Tetrachloro-m-xylene (35-115%)					68 %				
Surrogate: Tetrachloro-m-xylene (35-115%)					68 %				

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 011

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007

Report Number: ISB1802

Sampled: 02/16/09

Received: 02/16/09

Attention: Bronwyn Kelly

ORGANOCHLORINE PESTICIDES (EPA 608)

			MDL	Reporting	•	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: ISB1802-01RE1 (Outfall 011 - V	Vater) - cont.								
Reporting Units: ug/l									
4,4'-DDD	EPA 608	9B23113	0.0019	0.0047	ND	0.943	02/23/09	02/25/09	
4,4'-DDE	EPA 608	9B23113	0.0028	0.0047	ND	0.943	02/23/09	02/25/09	
4,4'-DDT	EPA 608	9B23113	0.0038	0.0094	ND	0.943	02/23/09	02/25/09	
Aldrin	EPA 608	9B23113	0.0014	0.0047	ND	0.943	02/23/09	02/25/09	
alpha-BHC	EPA 608	9B23113	0.0024	0.0094	ND	0.943	02/23/09	02/25/09	
beta-BHC	EPA 608	9B23113	0.0038	0.0094	ND	0.943	02/23/09	02/25/09	
delta-BHC	EPA 608	9B23113	0.0033	0.0047	ND	0.943	02/23/09	02/25/09	
Dieldrin	EPA 608	9B23113	0.0019	0.0047	ND	0.943	02/23/09	02/25/09	
Endosulfan I	EPA 608	9B23113	0.0019	0.0047	ND	0.943	02/23/09	02/25/09	
Endosulfan II	EPA 608	9B23113	0.0028	0.0047	ND	0.943	02/23/09	02/25/09	
Endosulfan sulfate	EPA 608	9B23113	0.0028	0.0094	ND	0.943	02/23/09	02/25/09	
Endrin	EPA 608	9B23113	0.0019	0.0047	ND	0.943	02/23/09	02/25/09	
Endrin aldehyde	EPA 608	9B23113	0.0019	0.0094	ND	0.943	02/23/09	02/25/09	
Endrin ketone	EPA 608	9B23113	0.0028	0.0094	ND	0.943	02/23/09	02/25/09	
gamma-BHC (Lindane)	EPA 608	9B23113	0.0028	0.019	ND	0.943	02/23/09	02/25/09	
Heptachlor	EPA 608	9B23113	0.0028	0.0094	ND	0.943	02/23/09	02/25/09	
Heptachlor epoxide	EPA 608	9B23113	0.0024	0.0047	ND	0.943	02/23/09	02/25/09	
Methoxychlor	EPA 608	9B23113	0.0033	0.0047	ND	0.943	02/23/09	02/25/09	
Chlordane	EPA 608	9B23113	0.038	0.094	ND	0.943	02/23/09	02/25/09	
Toxaphene	EPA 608	9B23113	0.24	0.47	ND	0.943	02/23/09	02/25/09	
Surrogate: Decachlorobiphenyl (45-120%)					82 %				
Surrogate: Decachlorobiphenyl (45-120%)					82 %				
Surrogate: Tetrachloro-m-xylene (35-115%)					78 %				
Surrogate: Tetrachloro-m-xylene (35-115%)					78 %				

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 011

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007

Report Number: ISB1802

Sampled: 02/16/09

Received: 02/16/09

Attention: Bronwyn Kelly

TOTAL PCBS (EPA 608)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ISB1802-01 (Outfall 011 - Water	er) - cont.								
Reporting Units: ug/l									
Aroclor 1016	EPA 608	9B20074	0.24	0.47	ND	0.943	02/20/09	02/21/09	
Aroclor 1221	EPA 608	9B20074	0.24	0.47	ND	0.943	02/20/09	02/21/09	
Aroclor 1232	EPA 608	9B20074	0.24	0.47	ND	0.943	02/20/09	02/21/09	
Aroclor 1242	EPA 608	9B20074	0.24	0.47	ND	0.943	02/20/09	02/21/09	
Aroclor 1248	EPA 608	9B20074	0.24	0.47	ND	0.943	02/20/09	02/21/09	
Aroclor 1254	EPA 608	9B20074	0.24	0.47	ND	0.943	02/20/09	02/21/09	
Aroclor 1260	EPA 608	9B20074	0.24	0.47	ND	0.943	02/20/09	02/21/09	
Surrogate: Decachlorobiphenyl (45-120%)					91 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 02/16/09

Project ID: Annual Outfall 011

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: ISB1802 Received: 02/16/09

Attention: Bronwyn Kelly

MWH-Pasadena/Boeing

HEXANE EXTRACTABLE MATERIAL

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers		
Sample ID: ISB1802-01 (Outfall 011 - Water) - cont.											
Reporting Units: mg/l											
Hexane Extractable Material (Oil &	EPA 1664A	9B24074	1.3	4.7	1.5	1	02/24/09	02/24/09	J		
Grease)											

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 011

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007

Report Number: ISB1802

Sampled: 02/16/09

Received: 02/16/09

Attention: Bronwyn Kelly

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ISB1802-01 (Outfall 011 - W	ater) - cont.								
Reporting Units: mg/l									
Hardness as CaCO3	SM2340B	[CALC]	N/A	0.33	39	1	02/17/09	02/17/09	
Barium	EPA 200.7	9B17091	0.0060	0.010	0.068	1	02/17/09	02/17/09	
Boron	EPA 200.7	9B17091	0.020	0.050	0.033	1	02/17/09	02/17/09	J
Calcium	EPA 200.7	9B17091	0.050	0.10	8.8	1	02/17/09	02/17/09	
Iron	EPA 200.7	9B17091	0.015	0.040	11	1	02/17/09	02/17/09	
Magnesium	EPA 200.7	9B17091	0.012	0.020	4.1	1	02/17/09	02/17/09	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 011

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007

Report Number: ISB1802

Sampled: 02/16/09

Received: 02/16/09

Attention: Bronwyn Kelly

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ISB1802-01 (Outfall 01	1 - Water) - cont.								
Reporting Units: ug/l									
Arsenic	EPA 200.7	9B17091	7.0	10	7.9	1	02/17/09	02/17/09	J
Antimony	EPA 200.8	9B17103	0.20	2.0	0.65	1	02/17/09	02/18/09	J
Beryllium	EPA 200.7	9B17091	0.90	2.0	ND	1	02/17/09	02/17/09	
Chromium	EPA 200.7	9B17091	2.0	5.0	25	1	02/17/09	02/17/09	В
Cobalt	EPA 200.7	9B17091	2.0	10	3.0	1	02/17/09	02/17/09	J
Manganese	EPA 200.7	9B17091	7.0	20	150	1	02/17/09	02/17/09	
Nickel	EPA 200.7	9B17091	2.0	10	14	1	02/17/09	02/17/09	В
Cadmium	EPA 200.8	9B17103	0.11	1.0	0.18	1	02/17/09	02/18/09	J
Vanadium	EPA 200.7	9B17091	3.0	10	25	1	02/17/09	02/17/09	
Zinc	EPA 200.7	9B17091	6.0	20	60	1	02/17/09	02/17/09	
Copper	EPA 200.8	9B17103	0.75	2.0	6.5	1	02/17/09	02/18/09	
Lead	EPA 200.8	9B17103	0.30	1.0	7.1	1	02/17/09	02/18/09	
Selenium	EPA 200.8	9B17103	0.30	2.0	ND	1	02/17/09	02/18/09	
Silver	EPA 200.8	9B17103	0.30	1.0	ND	1	02/17/09	02/18/09	
Thallium	EPA 200.8	9B17103	0.20	1.0	ND	1	02/17/09	02/18/09	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 011

618 Michillinda Avenue, Suite 200 Sampled: 02/16/09

Arcadia, CA 91007 Report Number: ISB1802 Received: 02/16/09

Attention: Bronwyn Kelly

MWH-Pasadena/Boeing

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ISB1802-01 (Outfall 011 - W	ater) - cont.								
Reporting Units: mg/l									
Hardness as CaCO3	SM2340B-Diss	[CALC]	N/A	0.33	25	1	02/20/09	02/23/09	
Barium	EPA 200.7-Diss	9B20105	0.0060	0.010	0.0082	1	02/20/09	02/23/09	J
Boron	EPA 200.7-Diss	9B20105	0.020	0.050	ND	1	02/20/09	02/24/09	
Calcium	EPA 200.7-Diss	9B20105	0.050	0.10	7.0	1	02/20/09	02/23/09	
Iron	EPA 200.7-Diss	9B20105	0.015	0.040	0.34	1	02/20/09	02/23/09	
Magnesium	EPA 200.7-Diss	9B20105	0.012	0.020	1.7	1	02/20/09	02/23/09	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 011

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007

Report Number: ISB1802

Sampled: 02/16/09

Received: 02/16/09

Attention: Bronwyn Kelly

DISSOLVED METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ISB1802-01 (Outfall 011 -	Water) - cont.								
Reporting Units: ug/l									
Arsenic	EPA 200.7-Diss	9B20105	7.0	10	ND	1	02/20/09	02/23/09	
Antimony	EPA 200.8-Diss	9B20106	0.20	2.0	0.58	1	02/20/09	02/25/09	J
Beryllium	EPA 200.7-Diss	9B20105	0.90	2.0	ND	1	02/20/09	02/23/09	
Chromium	EPA 200.7-Diss	9B20105	2.0	5.0	ND	1	02/20/09	02/23/09	
Cobalt	EPA 200.7-Diss	9B20105	2.0	10	ND	1	02/20/09	02/23/09	
Manganese	EPA 200.7-Diss	9B20105	7.0	20	23	1	02/20/09	02/23/09	
Nickel	EPA 200.7-Diss	9B20105	2.0	10	ND	1	02/20/09	02/23/09	
Cadmium	EPA 200.8-Diss	9B20106	0.11	1.0	ND	1	02/20/09	02/23/09	C
Vanadium	EPA 200.7-Diss	9B20105	3.0	10	ND	1	02/20/09	02/23/09	
Zinc	EPA 200.7-Diss	9B20105	6.0	20	ND	1	02/20/09	02/23/09	
Copper	EPA 200.8-Diss	9B20106	0.75	2.0	1.7	1	02/20/09	02/23/09	J
Lead	EPA 200.8-Diss	9B20106	0.30	1.0	ND	1	02/20/09	02/23/09	
Selenium	EPA 200.8-Diss	9B20106	0.30	2.0	0.48	1	02/20/09	02/23/09	J
Silver	EPA 200.8-Diss	9B20106	0.30	1.0	ND	1	02/20/09	02/23/09	
Thallium	EPA 200.8-Diss	9B20106	0.20	1.0	ND	1	02/20/09	02/23/09	C

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 011

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007

Report Number: ISB1802

Sampled: 02/16/09

Received: 02/16/09

Attention: Bronwyn Kelly

Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Water) - cont.								
SM4500NH3-C	9B24128	0.50	0.50	0.56	1	02/24/09	02/24/09	
SM5210B	9B17161	0.50	2.0	2.1	1	02/17/09	02/22/09	
EPA 300.0	9B16057	0.25	0.50	12	1	02/16/09	02/17/09	
SM 4500-F-C	9B17074	0.020	0.10	0.12	1	02/17/09	02/17/09	В
EPA 300.0	9B16057	0.060	0.11	0.97	1	02/16/09	02/17/09	
EPA 300.0	9B16057	0.090	0.15	ND	1	02/16/09	02/17/09	
EPA 300.0	9B16057	0.15	0.26	0.97	1	02/16/09	02/17/09	
EPA 330.5	9B17105	0.10	0.10	ND	1	02/17/09	02/17/09	HFT
EPA 300.0	9B16057	0.20	0.50	4.3	1	02/16/09	02/17/09	
SM5540-C	9B17098	0.025	0.10	ND	1	02/17/09	02/17/09	
SM2540C	9B18065	10	10	77	1	02/18/09	02/18/09	
SM5310B	9B24001	0.50	1.0	5.9	1	02/24/09	02/24/09	
SM 2540D	9B21068	1.0	10	160	1	02/21/09	02/21/09	
	Water) - cont. SM4500NH3-C SM5210B EPA 300.0 SM 4500-F-C EPA 300.0 EPA 300.0 EPA 300.0 EPA 330.5 EPA 300.0 SM5540-C SM2540C SM5310B	Water) - cont. SM4500NH3-C 9B24128 SM5210B 9B17161 EPA 300.0 9B16057 SM 4500-F-C 9B17074 EPA 300.0 9B16057 SM5540-C 9B17098 SM2540C 9B18065 SM5310B 9B24001	Method Batch Limit Water) - cont. 9B24128 0.50 SM4500NH3-C 9B17161 0.50 SM5210B 9B170161 0.50 EPA 300.0 9B16057 0.25 SM 4500-F-C 9B17074 0.020 EPA 300.0 9B16057 0.060 EPA 300.0 9B16057 0.15 EPA 300.0 9B16057 0.10 EPA 300.0 9B16057 0.20 SM5540-C 9B17098 0.025 SM2540C 9B18065 10 SM5310B 9B24001 0.50	Method Batch Limit Limit Water) - cont. SM4500NH3-C 9B24128 0.50 0.50 SM5210B 9B17161 0.50 2.0 EPA 300.0 9B16057 0.25 0.50 SM 4500-F-C 9B17074 0.020 0.10 EPA 300.0 9B16057 0.060 0.11 EPA 300.0 9B16057 0.15 0.26 EPA 300.0 9B16057 0.15 0.26 EPA 300.0 9B16057 0.10 0.10 EPA 300.0 9B16057 0.20 0.50 SM5540-C 9B17098 0.025 0.10 SM2540C 9B18065 10 10 SM5310B 9B24001 0.50 1.0	Method Batch Limit Limit Result Water) - cont. SM4500NH3-C 9B24128 0.50 0.50 0.56 SM5210B 9B17161 0.50 2.0 2.1 EPA 300.0 9B16057 0.25 0.50 12 SM 4500-F-C 9B17074 0.020 0.10 0.12 EPA 300.0 9B16057 0.060 0.11 0.97 EPA 300.0 9B16057 0.090 0.15 ND EPA 300.0 9B16057 0.15 0.26 0.97 EPA 300.0 9B16057 0.10 0.10 ND EPA 300.0 9B16057 0.20 0.50 4.3 SM5540-C 9B17098 0.025 0.10 ND SM2540C 9B18065 10 10 77 SM5310B 9B24001 0.50 1.0 5.9	Method Batch Limit Limit Result Factor Water) - cont. SM4500NH3-C 9B24128 0.50 0.50 0.56 1 SM5210B 9B17161 0.50 2.0 2.1 1 EPA 300.0 9B16057 0.25 0.50 12 1 SM 4500-F-C 9B17074 0.020 0.10 0.12 1 EPA 300.0 9B16057 0.060 0.11 0.97 1 EPA 300.0 9B16057 0.090 0.15 ND 1 EPA 300.0 9B16057 0.15 0.26 0.97 1 EPA 300.0 9B16057 0.20 0.50 4.3 1 EPA 300.0 9B16057 0.20 0.50 4.3 1 SM5540-C 9B17098 0.025 0.10 ND 1 SM2540C 9B18065 10 10 77 1 SM5310B 9B24001 0.50 1.0 5.9	Method Batch Limit Limit Result Factor Extracted Water) - cont. SM4500NH3-C 9B24128 0.50 0.50 0.56 1 02/24/09 SM5210B 9B17161 0.50 2.0 2.1 1 02/17/09 EPA 300.0 9B16057 0.25 0.50 12 1 02/16/09 SM 4500-F-C 9B17074 0.020 0.10 0.12 1 02/17/09 EPA 300.0 9B16057 0.060 0.11 0.97 1 02/16/09 EPA 300.0 9B16057 0.090 0.15 ND 1 02/16/09 EPA 300.0 9B16057 0.15 0.26 0.97 1 02/16/09 EPA 300.0 9B16057 0.10 0.10 ND 1 02/17/09 EPA 300.0 9B16057 0.20 0.50 4.3 1 02/16/09 SM5540-C 9B17098 0.025 0.10 ND 1 02/17/09	Method Batch Limit Limit Result Factor Extracted Analyzed Water) - cont. SM4500NH3-C 9B24128 0.50 0.50 0.56 1 02/24/09 02/24/09 SM5210B 9B17161 0.50 2.0 2.1 1 02/17/09 02/22/09 EPA 300.0 9B16057 0.25 0.50 12 1 02/16/09 02/17/09 SM 4500-F-C 9B17074 0.020 0.10 0.12 1 02/17/09 02/17/09 EPA 300.0 9B16057 0.060 0.11 0.97 1 02/16/09 02/17/09 EPA 300.0 9B16057 0.15 0.26 0.97 1 02/16/09 02/17/09 EPA 300.0 9B16057 0.10 0.10 ND 1 02/16/09 02/17/09 EPA 300.0 9B16057 0.10 0.10 ND 1 02/16/09 02/17/09 EPA 300.0 9B16057 0.20 0.50 4.3

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 011

Sampled: 02/16/09

Report Number: ISB1802

Received: 02/16/09

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ISB1802-01 (Outfall 011 - Wat	er) - cont.								
Reporting Units: ml/l	G2 55 5 40 F	0745065	0.40	0.40			0.0 /4.0 /0.0	0.0 /4.0 /0.0	
Total Settleable Solids	SM2540F	9B17065	0.10	0.10	ND	1	02/17/09	02/17/09	pHa

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 011

Sampled: 02/16/09

Report Number: ISB1802

Received: 02/16/09

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ISB1802-01 (Outfall 011 - Wat Reporting Units: NTU	er) - cont.								
Turbidity	EPA 180.1	9B17067	0.40	10	210	10	02/17/09	02/17/09	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 011

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007

Report Number: ISB1802

Sampled: 02/16/09

Received: 02/16/09

Attention: Bronwyn Kelly

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ISB1802-01 (Outfall 011 - W Reporting Units: ug/l	Vater) - cont.								
Chromium VI	EPA 218.6	9B16073	0.25	1.0	ND	1	02/16/09	02/16/09	
Perchlorate	EPA 314.0	9B17060	0.90	1.0	ND	1	02/17/09	02/17/09	
Total Cyanide	SM4500-CN-C,E	9B17089	2.2	5.0	ND	1	02/17/09	02/17/09	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 011

Sampled: 02/16/09

Report Number: ISB1802

Received: 02/16/09

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ISB1802-01 (Outfall 011 - Water	er) - cont.								
Reporting Units: umhos/cm Specific Conductance	EPA 120.1	9B18054	1.0	1.0	85	1	02/18/09	02/18/09	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 02/16/09

MWH-Pasadena/Boeing Project ID: Annual Outfall 011

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: ISB1802 Received: 02/16/09

Attention: Bronwyn Kelly

CFR136A 608

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ISB1802-01 (Outfall 011 - Wa Reporting Units: ug/L	ter) - cont.								
alpha-BHC	CFR136A 608	9064381	0.0053	0.05	ND	1	03/05/09	03/10/09	HTV
Surrogate: Decachlorobiphenyl (32-144%)					59 %				
Surrogate: Tetrachloro-m-xylene (52-117%)	<i>5)</i>				88 %				

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 011

618 Michillinda Avenue, Suite 200 Sampled: 02/16/09

Arcadia, CA 91007 Report Number: ISB1802 Received: 02/16/09
Attention: Bronwyn Kelly

MCAWW 245.1

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ISB1802-01 (Outfall 011 - W	ater) - cont.								
Reporting Units: ug/L Mercury	MCAWW 245.1	9050174	0.027	0.2	ND	1	02/19/09	02/19/09	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Project ID: Annual Outfall 011

618 Michillinda Avenue, Suite 200

Sampled: 02/16/09 Report Number: ISB1802

Attention: Bronwyn Kelly

Arcadia, CA 91007

Received: 02/16/09

MCAWW 245.1-DISS

			MDL	Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method B	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: ISB1802-01 (Outfall 011	- Water) - cont.								
Reporting Units: ug/L									
Mercury	MCAWW 245.1-DISS 90	50182	0.027	0.2	ND	1	02/19/09	02/19/09	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 011

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007

Report Number: ISB1802

Sampled: 02/16/09

Received: 02/16/09

Attention: Bronwyn Kelly

SHORT HOLD TIME DETAIL REPORT

	Hold Time (in days)	Date/Time Sampled	Date/Time Received	Date/Time Extracted	Date/Time Analyzed
Sample ID: Outfall 011 (ISB1802-01) - Water					
EPA 180.1	2	02/16/2009 14:30	02/16/2009 19:00	02/17/2009 09:30	02/17/2009 12:55
EPA 218.6	1	02/16/2009 14:30	02/16/2009 19:00	02/16/2009 21:30	02/16/2009 22:18
EPA 300.0	2	02/16/2009 14:30	02/16/2009 19:00	02/16/2009 16:00	02/17/2009 02:24
EPA 330.5	1	02/16/2009 14:30	02/16/2009 19:00	02/17/2009 12:30	02/17/2009 12:30
EPA 624	3	02/16/2009 14:30	02/16/2009 19:00	02/19/2009 00:00	02/19/2009 14:08
Filtration	1	02/16/2009 14:30	02/16/2009 19:00	02/17/2009 00:29	02/17/2009 00:33
SM2540F	2	02/16/2009 14:30	02/16/2009 19:00	02/17/2009 09:45	02/17/2009 09:45
SM5210B	2	02/16/2009 14:30	02/16/2009 19:00	02/17/2009 23:16	02/22/2009 11:00
SM5540-C	2	02/16/2009 14:30	02/16/2009 19:00	02/17/2009 18:19	02/17/2009 22:59
Sample ID: Trip Blanks (ISB1802-02) - Water	•				
EPA 624	3	02/16/2009 16:15	02/16/2009 19:00	02/18/2009 00:00	02/18/2009 15:11

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 011

Sampled: 02/16/09

Report Number: ISB1802

Received: 02/16/09

METHOD BLANK/QC DATA

EXTRACTABLE FUEL HYDROCARBONS (CADHS/8015 Modified)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 9B19076 Extracted: 02/19/09	-										
Blank Analyzed: 02/19/2009 (9B19076-B	LK1)										
DRO (C13 - C28)	ND	0.10	0.050	mg/l							
EFH (C10 - C28)	ND	0.10	0.050	mg/l							
Surrogate: n-Octacosane	0.106			mg/l	0.200		53	40-125			
LCS Analyzed: 02/19/2009 (9B19076-BS)	1)										MNR1
EFH (C10 - C28)	0.498	0.10	0.050	mg/l	1.00		50	40-115			
Surrogate: n-Octacosane	0.129			mg/l	0.200		65	40-125			
LCS Dup Analyzed: 02/19/2009 (9B19070	6-BSD1)										
EFH (C10 - C28)	0.575	0.10	0.050	mg/l	1.00		58	40-115	14	25	
Surrogate: n-Octacosane	0.144			mg/l	0.200		72	40-125			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Annual Outfall 011

Sampled: 02/16/09

Report Number: ISB1802

Received: 02/16/09

METHOD BLANK/QC DATA

VOLATILE FUEL HYDROCARBONS (EPA 5030/CADHS Mod. 8015)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 9B21002 Extracted: 02/21/09	<u>)</u>										
Blank Analyzed: 02/21/2009 (9B21002-B	SLK1)										
GRO (C4 - C12)	ND	0.10	0.025	mg/l							
Surrogate: 4-BFB (FID)	0.00986			mg/l	0.0100		99	65-140			
LCS Analyzed: 02/21/2009 (9B21002-BS	1)										
GRO (C4 - C12)	0.814	0.10	0.025	mg/l	0.800		102	80-120			
Surrogate: 4-BFB (FID)	0.0138			mg/l	0.0100		138	65-140			
Matrix Spike Analyzed: 02/21/2009 (9B2	21002-MS1)				Sou	rce: ISB1	906-03				
GRO (C4 - C12)	0.270	0.10	0.025	mg/l	0.220	0.0336	107	65-140			
Surrogate: 4-BFB (FID)	0.0119			mg/l	0.0100		119	65-140			
Matrix Spike Dup Analyzed: 02/21/2009	(9B21002-M	SD1)			Sou	rce: ISB1	906-03				
GRO (C4 - C12)	0.275	0.10	0.025	mg/l	0.220	0.0336	110	65-140	2	20	
Surrogate: 4-BFB (FID)	0.0126			mg/l	0.0100		126	65-140			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Attention: Bronwyn Kelly Project ID: Annual Outfall 011

Sampled: 02/16/09

Report Number: ISB1802

Received: 02/16/09

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Ameliaka	D14	Reporting	MDI	¥1	Spike	Source	0/ DEC	%REC	DDD	RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 9B17010 Extracted: 02/17/09	<u>)</u>										
Blank Analyzed: 02/17/2009 (9B17010-E											
Benzene	ND	0.50	0.28	ug/l							
Bromodichloromethane	ND	0.50	0.30	ug/l							
Bromoform	ND	0.50	0.40	ug/l							
Bromomethane	ND	1.0	0.42	ug/l							
Carbon tetrachloride	ND	0.50	0.28	ug/l							
Chlorobenzene	ND	0.50	0.36	ug/l							
Chloroethane	ND	1.0	0.40	ug/l							
Chloroform	ND	0.50	0.33	ug/l							
Chloromethane	ND	0.50	0.40	ug/l							
Dibromochloromethane	ND	0.50	0.40	ug/l							
1,2-Dichlorobenzene	ND	0.50	0.32	ug/l							
1,3-Dichlorobenzene	ND	0.50	0.35	ug/l							
1,4-Dichlorobenzene	ND	0.50	0.37	ug/l							
1,1-Dichloroethane	ND	0.50	0.40	ug/l							
1,2-Dichloroethane	ND	0.50	0.28	ug/l							
1,1-Dichloroethene	ND	0.50	0.42	ug/l							
trans-1,2-Dichloroethene	ND	0.50	0.30	ug/l							
1,2-Dichloropropane	ND	0.50	0.35	ug/l							
cis-1,3-Dichloropropene	ND	0.50	0.22	ug/l							
trans-1,3-Dichloropropene	ND	0.50	0.32	ug/l							
Ethylbenzene	ND	0.50	0.25	ug/l							
Methylene chloride	ND	1.0	0.95	ug/l							
1,1,2,2-Tetrachloroethane	ND	0.50	0.30	ug/l							
Tetrachloroethene	ND	0.50	0.32	ug/l							
Toluene	ND	0.50	0.36	ug/l							
1,1,1-Trichloroethane	ND	0.50	0.30	ug/l							
1,1,2-Trichloroethane	ND	0.50	0.30	ug/l							
Trichloroethene	ND	0.50	0.26	ug/l							
Trichlorofluoromethane	ND	0.50	0.34	ug/l							
Trichlorotrifluoroethane (Freon 113)	ND	5.0	0.50	ug/l							
Vinyl chloride	ND	0.50	0.40	ug/l							
Xylenes, Total	ND	1.5	0.90	ug/l							
Surrogate: 4-Bromofluorobenzene	22.4			ug/l	25.0		90	80-120			
Surrogate: Dibromofluoromethane	23.9			ug/l	25.0		96	80-120			
Surrogate: Toluene-d8	23.9			ug/l	25.0		96	80-120			
	20.7			···8/*	20.0		, 0	00 120			

TestAmerica Irvine

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 011

Report Number: ISB1802

Sampled: 02/16/09

Received: 02/16/09

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 9B17010 Extracted: 02/17/09											
LCS Analyzed: 02/17/2009 (9B17010-BS	1)										
Benzene	26.4	0.50	0.28	ug/l	25.0		106	70-120			
Bromodichloromethane	29.0	0.50	0.30	ug/l	25.0		116	70-135			
Bromoform	26.1	0.50	0.40	ug/l	25.0		104	55-130			
Bromomethane	28.1	1.0	0.42	ug/l	25.0		112	65-140			
Carbon tetrachloride	32.2	0.50	0.28	ug/l	25.0		129	65-140			
Chlorobenzene	25.0	0.50	0.36	ug/l	25.0		100	75-120			
Chloroethane	29.0	1.0	0.40	ug/l	25.0		116	60-140			
Chloroform	25.9	0.50	0.33	ug/l	25.0		104	70-130			
Chloromethane	27.8	0.50	0.40	ug/l	25.0		111	50-140			
Dibromochloromethane	28.0	0.50	0.40	ug/l	25.0		112	70-140			
1,2-Dichlorobenzene	24.6	0.50	0.32	ug/l	25.0		98	75-120			
1,3-Dichlorobenzene	25.0	0.50	0.35	ug/l	25.0		100	75-120			
1,4-Dichlorobenzene	22.5	0.50	0.37	ug/l	25.0		90	75-120			
1,1-Dichloroethane	26.9	0.50	0.40	ug/l	25.0		108	70-125			
1,2-Dichloroethane	24.9	0.50	0.28	ug/l	25.0		99	60-140			
1,1-Dichloroethene	25.6	0.50	0.42	ug/l	25.0		103	70-125			
trans-1,2-Dichloroethene	22.0	0.50	0.30	ug/l	25.0		88	70-125			
1,2-Dichloropropane	27.4	0.50	0.35	ug/l	25.0		109	70-125			
cis-1,3-Dichloropropene	32.9	0.50	0.22	ug/l	25.0		132	75-125			L
trans-1,3-Dichloropropene	26.1	0.50	0.32	ug/l	25.0		104	70-125			
Ethylbenzene	26.5	0.50	0.25	ug/l	25.0		106	75-125			
Methylene chloride	25.1	1.0	0.95	ug/l	25.0		101	55-130			
1,1,2,2-Tetrachloroethane	27.9	0.50	0.30	ug/l	25.0		112	55-130			
Tetrachloroethene	26.2	0.50	0.32	ug/l	25.0		105	70-125			
Toluene	27.0	0.50	0.36	ug/l	25.0		108	70-120			
1,1,1-Trichloroethane	28.3	0.50	0.30	ug/l	25.0		113	65-135			
1,1,2-Trichloroethane	26.4	0.50	0.30	ug/l	25.0		106	70-125			
Trichloroethene	25.2	0.50	0.26	ug/l	25.0		101	70-125			
Trichlorofluoromethane	25.8	0.50	0.34	ug/l	25.0		103	65-145			
Vinyl chloride	26.9	0.50	0.40	ug/l	25.0		108	55-135			
Xylenes, Total	79.8	1.5	0.90	ug/l	75.0		106	70-125			
Surrogate: 4-Bromofluorobenzene	23.8			ug/l	25.0		95	80-120			
Surrogate: Dibromofluoromethane	24.0			ug/l	25.0		96	80-120			
Surrogate: Toluene-d8	24.5			ug/l	25.0		98	80-120			

TestAmerica Irvine

%REC

THE LEADER IN ENVIRONMENTAL TESTING

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Annual Outfall 011

TGD 4 0 0 2

Spike

Source

Report Number: ISB1802

Reporting

Sampled: 02/16/09 Received: 02/16/09

RPD

Data

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

		Keporting			Spike	Source		OKEC		KI D	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 9B17010 Extracted: 02/17	7/09										
Matrix Spike Analyzed: 02/17/2009 (9B17010-MS1)				Sou	rce: ISB1	785-01				
Benzene	27.6	0.50	0.28	ug/l	25.0	0.840	107	65-125			
Bromodichloromethane	31.1	0.50	0.30	ug/l	25.0	1.21	120	70-135			
Bromoform	28.0	0.50	0.40	ug/l	25.0	ND	112	55-135			
Bromomethane	28.6	1.0	0.42	ug/l	25.0	ND	114	55-145			
Carbon tetrachloride	31.0	0.50	0.28	ug/l	25.0	ND	124	65-140			
Chlorobenzene	25.7	0.50	0.36	ug/l	25.0	ND	103	75-125			
Chloroethane	29.0	1.0	0.40	ug/l	25.0	ND	116	55-140			
Chloroform	44.7	0.50	0.33	ug/l	25.0	19.2	102	65-135			
Chloromethane	29.1	0.50	0.40	ug/l	25.0	ND	116	45-145			
Dibromochloromethane	31.1	0.50	0.40	ug/l	25.0	0.980	120	65-140			
1,2-Dichlorobenzene	25.2	0.50	0.32	ug/l	25.0	ND	101	75-125			
1,3-Dichlorobenzene	24.9	0.50	0.35	ug/l	25.0	ND	100	75-125			
1,4-Dichlorobenzene	23.0	0.50	0.37	ug/l	25.0	ND	92	75-125			
1,1-Dichloroethane	28.5	0.50	0.40	ug/l	25.0	ND	114	65-130			
1,2-Dichloroethane	28.9	0.50	0.28	ug/l	25.0	2.41	106	60-140			
1,1-Dichloroethene	26.8	0.50	0.42	ug/l	25.0	ND	107	60-130			
trans-1,2-Dichloroethene	22.7	0.50	0.30	ug/l	25.0	ND	91	65-130			
1,2-Dichloropropane	28.7	0.50	0.35	ug/l	25.0	ND	115	65-130			
cis-1,3-Dichloropropene	34.2	0.50	0.22	ug/l	25.0	ND	137	70-130			M7
trans-1,3-Dichloropropene	28.0	0.50	0.32	ug/l	25.0	ND	112	65-135			
Ethylbenzene	26.8	0.50	0.25	ug/l	25.0	ND	107	65-130			
Methylene chloride	27.2	1.0	0.95	ug/l	25.0	ND	109	50-135			
1,1,2,2-Tetrachloroethane	29.3	0.50	0.30	ug/l	25.0	ND	117	55-135			
Tetrachloroethene	25.5	0.50	0.32	ug/l	25.0	ND	102	65-130			
Toluene	27.3	0.50	0.36	ug/l	25.0	ND	109	70-125			
1,1,1-Trichloroethane	28.4	0.50	0.30	ug/l	25.0	ND	114	65-140			
1,1,2-Trichloroethane	28.4	0.50	0.30	ug/l	25.0	ND	114	65-130			
Trichloroethene	24.6	0.50	0.26	ug/l	25.0	ND	98	65-125			
Trichlorofluoromethane	25.6	0.50	0.34	ug/l	25.0	ND	102	60-145			
Vinyl chloride	27.2	0.50	0.40	ug/l	25.0	ND	109	45-140			
Xylenes, Total	81.5	1.5	0.90	ug/l	75.0	ND	109	60-130			
Surrogate: 4-Bromofluorobenzene	24.7			ug/l	25.0		99	80-120			
Surrogate: Dibromofluoromethane	25.0			ug/l	25.0		100	80-120			
Surrogate: Toluene-d8	24.3			ug/l	25.0		97	80-120			

TestAmerica Irvine

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Annual Outfall 011

Report Number: ISB1802

Sampled: 02/16/09 Received: 02/16/09

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source	%REC	%REC	RPD	RPD Limit	Data Qualifiers
•		Limit	MIDL	Cilits	Level	Result	/0KEC	Limits	KI D	Limit	Quanners
Batch: 9B17010 Extracted: 02/17/09	<u>-</u>										
Matrix Spike Dup Analyzed: 02/17/2009	(9B17010-N	(SD1)			Sou	rce: ISB1	785-01				
Benzene	27.7	0.50	0.28	ug/l	25.0	0.840	108	65-125	1	20	
Bromodichloromethane	30.2	0.50	0.30	ug/l	25.0	1.21	116	70-135	3	20	
Bromoform	26.4	0.50	0.40	ug/l	25.0	ND	106	55-135	6	25	
Bromomethane	27.5	1.0	0.42	ug/l	25.0	ND	110	55-145	4	25	
Carbon tetrachloride	30.3	0.50	0.28	ug/l	25.0	ND	121	65-140	2	25	
Chlorobenzene	25.2	0.50	0.36	ug/l	25.0	ND	101	75-125	2	20	
Chloroethane	28.7	1.0	0.40	ug/l	25.0	ND	115	55-140	1	25	
Chloroform	43.9	0.50	0.33	ug/l	25.0	19.2	99	65-135	2	20	
Chloromethane	27.8	0.50	0.40	ug/l	25.0	ND	111	45-145	5	25	
Dibromochloromethane	29.3	0.50	0.40	ug/l	25.0	0.980	113	65-140	6	25	
1,2-Dichlorobenzene	24.6	0.50	0.32	ug/l	25.0	ND	98	75-125	2	20	
1,3-Dichlorobenzene	24.8	0.50	0.35	ug/l	25.0	ND	99	75-125	1	20	
1,4-Dichlorobenzene	22.4	0.50	0.37	ug/l	25.0	ND	90	75-125	2	20	
1,1-Dichloroethane	28.1	0.50	0.40	ug/l	25.0	ND	112	65-130	2	20	
1,2-Dichloroethane	27.1	0.50	0.28	ug/l	25.0	2.41	99	60-140	6	20	
1,1-Dichloroethene	26.1	0.50	0.42	ug/l	25.0	ND	104	60-130	3	20	
trans-1,2-Dichloroethene	22.8	0.50	0.30	ug/l	25.0	ND	91	65-130	0	20	
1,2-Dichloropropane	29.4	0.50	0.35	ug/l	25.0	ND	118	65-130	2	20	
cis-1,3-Dichloropropene	34.4	0.50	0.22	ug/l	25.0	ND	137	70-130	0	20	<i>M</i> 7
trans-1,3-Dichloropropene	27.5	0.50	0.32	ug/l	25.0	ND	110	65-135	2	25	
Ethylbenzene	25.6	0.50	0.25	ug/l	25.0	ND	103	65-130	4	20	
Methylene chloride	26.5	1.0	0.95	ug/l	25.0	ND	106	50-135	2	20	
1,1,2,2-Tetrachloroethane	28.6	0.50	0.30	ug/l	25.0	ND	114	55-135	2	30	
Tetrachloroethene	25.7	0.50	0.32	ug/l	25.0	ND	103	65-130	1	20	
Toluene	27.6	0.50	0.36	ug/l	25.0	ND	110	70-125	1	20	
1,1,1-Trichloroethane	27.5	0.50	0.30	ug/l	25.0	ND	110	65-140	3	20	
1,1,2-Trichloroethane	27.9	0.50	0.30	ug/l	25.0	ND	112	65-130	2	25	
Trichloroethene	25.0	0.50	0.26	ug/l	25.0	ND	100	65-125	1	20	
Trichlorofluoromethane	24.7	0.50	0.34	ug/l	25.0	ND	99	60-145	4	25	
Vinyl chloride	24.3	0.50	0.40	ug/l	25.0	ND	97	45-140	11	30	
Xylenes, Total	78.5	1.5	0.90	ug/l	75.0	ND	105	60-130	4	20	
Surrogate: 4-Bromofluorobenzene	24.3			ug/l	25.0		97	80-120			
Surrogate: Dibromofluoromethane	24.6			ug/l	25.0		98	80-120			
Surrogate: Toluene-d8	24.8			ug/l	25.0		99	80-120			

TestAmerica Irvine

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 011

Report Number: ISB1802

Sampled: 02/16/09 Received: 02/16/09

METHOD BLANK/QC DATA

PURGEABLES-- GC/MS (EPA 624)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 9B18010 Extracted: 02/18/0	9										
Blank Analyzed: 02/18/2009 (9B18010-I	BLK1)										
Acrolein	ND	5.0	4.0	ug/l							
Acrylonitrile	ND	2.0	0.70	ug/l							
2-Chloroethyl vinyl ether	ND	5.0	1.8	ug/l							
Surrogate: 4-Bromofluorobenzene	21.7			ug/l	25.0		87	80-120			
Surrogate: Dibromofluoromethane	22.1			ug/l	25.0		89	80-120			
Surrogate: Toluene-d8	23.6			ug/l	25.0		95	80-120			
LCS Analyzed: 02/18/2009 (9B18010-BS	S1)										
2-Chloroethyl vinyl ether	23.9	5.0	1.8	ug/l	25.0		95	25-170			
Surrogate: 4-Bromofluorobenzene	22.6			ug/l	25.0		90	80-120			
Surrogate: Dibromofluoromethane	23.4			ug/l	25.0		94	80-120			
Surrogate: Toluene-d8	23.7			ug/l	25.0		95	80-120			
Matrix Spike Analyzed: 02/18/2009 (9B	18010-MS1)				Sou	rce: ISB1	1785-01				
2-Chloroethyl vinyl ether	26.3	5.0	1.8	ug/l	25.0	ND	105	25-170			
Surrogate: 4-Bromofluorobenzene	22.8			ug/l	25.0		91	80-120			
Surrogate: Dibromofluoromethane	23.8			ug/l	25.0		95	80-120			
Surrogate: Toluene-d8	24.1			ug/l	25.0		96	80-120			
Matrix Spike Dup Analyzed: 02/18/2009	9 (9B18010-M	SD1)			Sou	rce: ISB1	1785-01				
2-Chloroethyl vinyl ether	24.8	5.0	1.8	ug/l	25.0	ND	99	25-170	6	25	
Surrogate: 4-Bromofluorobenzene	22.7			ug/l	25.0		91	80-120			
Surrogate: Dibromofluoromethane	23.8			ug/l	25.0		95	80-120			
Surrogate: Toluene-d8	24.2			ug/l	25.0		97	80-120			
Batch: 9B19003 Extracted: 02/19/0	9_										
Blank Analyzed: 02/19/2009 (9B19003-I	BLK1)										
Acrolein	ND	5.0	4.0	ug/l							
Acrylonitrile	ND	2.0	0.70	ug/l							
2-Chloroethyl vinyl ether	ND	5.0	1.8	ug/l							
Surrogate: 4-Bromofluorobenzene	24.3			ug/l	25.0		97	80-120			
Surrogate: Dibromofluoromethane	23.8			ug/l	25.0		95	80-120			
Surrogate: Toluene-d8	23.5			ug/l	25.0		94	80-120			
				-							

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 011

Sampled: 02/16/09

Report Number: ISB1802

Received: 02/16/09

METHOD BLANK/QC DATA

PURGEABLES-- GC/MS (EPA 624)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 9B19003 Extracted: 02/19/09	-										
LCS Analyzed: 02/19/2009 (9B19003-BS1	.)										
2-Chloroethyl vinyl ether	24.9	5.0	1.8	ug/l	25.0		100	25-170			
Surrogate: 4-Bromofluorobenzene	25.9			ug/l	25.0		103	80-120			
Surrogate: Dibromofluoromethane	24.8			ug/l	25.0		99	80-120			
Surrogate: Toluene-d8	24.5			ug/l	25.0		98	80-120			
Matrix Spike Analyzed: 02/19/2009 (9B19	9003-MS1)				Sou	rce: ISB2	088-01				
2-Chloroethyl vinyl ether	ND	5.0	1.8	ug/l	25.0	ND		25-170			M13
Surrogate: 4-Bromofluorobenzene	24.3			ug/l	25.0		97	80-120			
Surrogate: Dibromofluoromethane	23.7			ug/l	25.0		95	80-120			
Surrogate: Toluene-d8	23.9			ug/l	25.0		96	80-120			
Matrix Spike Dup Analyzed: 02/19/2009	(9B19003-M	SD1)			Sou	rce: ISB2	088-01				
2-Chloroethyl vinyl ether	ND	5.0	1.8	ug/l	25.0	ND		25-170		25	M13
Surrogate: 4-Bromofluorobenzene	24.4			ug/l	25.0		98	80-120			
Surrogate: Dibromofluoromethane	23.4			ug/l	25.0		94	80-120			
Surrogate: Toluene-d8	24.3			ug/l	25.0		97	80-120			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 011

Sampled: 02/16/09

Report Number: ISB1802

Received: 02/16/09

METHOD BLANK/QC DATA

PURGEABLES BY GC/MS, TENTATIVELY IDENTIFIED COMPOUNDS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 9B17010 Extracted: 02/17/09	<u>)</u>										
Blank Analyzed: 02/17/2009 (9B17010-E	BLK1)										
Cyclohexane	ND	2.5	N/A	ug/l							
freon 123a	ND	2.5	N/A	ug/l							

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Annual Outfall 011

Sampled: 02/16/09

Report Number: ISB1802

Received: 02/16/09

METHOD BLANK/QC DATA

1,4-DIOXANE BY DIRECT INJECTION GCMS - SINGLE ION MONITORING (SIM)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 9B19013 Extracted: 02/19/09	_										
Blank Analyzed: 02/19/2009 (9B19013-B	LK1)										
1,4-Dioxane	ND	2.0	1.0	ug/l							
Surrogate: Dibromofluoromethane	0.990			ug/l	1.00		99	80-120			
LCS Analyzed: 02/19/2009 (9B19013-BS)	1)										
1,4-Dioxane	11.0	2.0	1.0	ug/l	10.0		110	70-125			
Surrogate: Dibromofluoromethane	1.03			ug/l	1.00		103	80-120			
Matrix Spike Analyzed: 02/19/2009 (9B1	9013-MS1)				Sou	rce: ISB1	803-01				
1,4-Dioxane	11.7	2.0	1.0	ug/l	10.0	ND	117	70-130			
Surrogate: Dibromofluoromethane	1.03			ug/l	1.00		103	80-120			
Matrix Spike Dup Analyzed: 02/19/2009	(9B19013-M	SD1)			Sou	rce: ISB1	803-01				
1,4-Dioxane	10.7	2.0	1.0	ug/l	10.0	ND	107	70-130	10	30	
Surrogate: Dibromofluoromethane	1.01			ug/l	1.00		101	80-120			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 011

618 Michillinda Avenue, Suite 200 Sampled: 02/16/09

Arcadia, CA 91007 Report Number: ISB1802 Received: 02/16/09
Attention: Bronwyn Kelly

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 9B21046 Extracted: 02/21/09)										
	_										
Blank Analyzed: 02/24/2009 (9B21046-B	BLK1)										
Acenaphthene	ND	0.50	0.10	ug/l							
Acenaphthylene	ND	0.50	0.10	ug/l							
Aniline	ND	10	0.30	ug/l							
Anthracene	ND	0.50	0.10	ug/l							
Benzidine	ND	5.0	N/A	ug/l							
Benzo(a)anthracene	ND	5.0	0.10	ug/l							
Benzo(a)pyrene	ND	2.0	0.10	ug/l							
Benzo(b)fluoranthene	ND	2.0	0.10	ug/l							
Benzo(g,h,i)perylene	0.400	5.0	0.10	ug/l							J
Benzo(k)fluoranthene	ND	0.50	0.10	ug/l							
Benzoic acid	ND	20	3.0	ug/l							
Benzyl alcohol	ND	5.0	0.10	ug/l							
4-Bromophenyl phenyl ether	ND	1.0	0.10	ug/l							
Butyl benzyl phthalate	1.04	5.0	0.70	ug/l							J
4-Chloro-3-methylphenol	ND	2.0	0.20	ug/l							
4-Chloroaniline	ND	2.0	0.10	ug/l							
Bis(2-chloroethoxy)methane	ND	0.50	0.10	ug/l							
Bis(2-chloroethyl)ether	ND	0.50	0.10	ug/l							
Bis(2-chloroisopropyl)ether	ND	0.50	0.10	ug/l							
Bis(2-ethylhexyl)phthalate	ND	5.0	1.7	ug/l							
2-Chloronaphthalene	ND	0.50	0.10	ug/l							
2-Chlorophenol	ND	1.0	0.20	ug/l							
4-Chlorophenyl phenyl ether	ND	0.50	0.10	ug/l							
Chrysene	ND	0.50	0.10	ug/l							
Dibenz(a,h)anthracene	ND	0.50	0.10	ug/l							
Dibenzofuran	ND	0.50	0.10	ug/l							
Di-n-butyl phthalate	ND	2.0	0.20	ug/l							
1,2-Dichlorobenzene	ND	0.50	0.10	ug/l							
1,3-Dichlorobenzene	ND	0.50	0.10	ug/l							
1,4-Dichlorobenzene	ND	0.50	0.20	ug/l							
3,3'-Dichlorobenzidine	ND	5.0	N/A	ug/l							
2,4-Dichlorophenol	ND	2.0	0.20	ug/l							
Diethyl phthalate	ND	1.0	0.10	ug/l							
2,4-Dimethylphenol	ND	2.0	0.30	ug/l							
Dimethyl phthalate	ND	0.50	0.10	ug/l							
·> - E		2.20									

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Annual Outfall 011

Sampled: 02/16/09

Report Number: ISB1802

Received: 02/16/09

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 9B21046 Extracted: 02/21/09	9										
	_										
Blank Analyzed: 02/24/2009 (9B21046-F	BLK1)										
4,6-Dinitro-2-methylphenol	ND	5.0	0.20	ug/l							
2,4-Dinitrophenol	ND	5.0	0.90	ug/l							
2,4-Dinitrotoluene	ND	5.0	0.20	ug/l							
2,6-Dinitrotoluene	ND	5.0	0.10	ug/l							
Di-n-octyl phthalate	ND	5.0	0.10	ug/l							
1,2-Diphenylhydrazine/Azobenzene	ND	1.0	0.10	ug/l							
Fluoranthene	ND	0.50	0.10	ug/l							
Fluorene	ND	0.50	0.10	ug/l							
Hexachlorobenzene	ND	1.0	0.10	ug/l							
Hexachlorobutadiene	ND	2.0	0.20	ug/l							
Hexachlorocyclopentadiene	ND	5.0	0.10	ug/l							
Hexachloroethane	ND	3.0	0.20	ug/l							
Indeno(1,2,3-cd)pyrene	0.240	2.0	0.10	ug/l							J
Isophorone	ND	1.0	0.10	ug/l							
2-Methylnaphthalene	ND	1.0	0.10	ug/l							
2-Methylphenol	ND	2.0	0.10	ug/l							
4-Methylphenol	ND	5.0	0.20	ug/l							
Naphthalene	ND	1.0	0.10	ug/l							
2-Nitroaniline	ND	5.0	0.10	ug/l							
3-Nitroaniline	ND	5.0	0.20	ug/l							
4-Nitroaniline	ND	5.0	0.50	ug/l							
Nitrobenzene	ND	1.0	0.10	ug/l							
2-Nitrophenol	ND	2.0	0.10	ug/l							
4-Nitrophenol	ND	5.0	2.5	ug/l							
N-Nitroso-di-n-propylamine	ND	2.0	0.10	ug/l							
N-Nitrosodimethylamine	ND	2.0	0.10	ug/l							
N-Nitrosodiphenylamine	ND	1.0	0.10	ug/l							
Pentachlorophenol	ND	2.0	0.10	ug/l							
Phenanthrene	ND	0.50	0.10	ug/l							
Phenol	ND	1.0	0.30	ug/l							
Pyrene	ND	0.50	0.10	ug/l							
1,2,4-Trichlorobenzene	ND	1.0	0.10	ug/l							
2,4,5-Trichlorophenol	ND	2.0	0.20	ug/l							
2,4,6-Trichlorophenol	ND	1.0	0.10	ug/l							
Surrogate: 2,4,6-Tribromophenol	13.8			ug/l	20.0		69	40-120			

TestAmerica Irvine

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Annual Outfall 011

B 10D1002

Report Number: ISB1802

Sampled: 02/16/09 Received: 02/16/09

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
•				0			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				C
Batch: 9B21046 Extracted: 02/21/09	<u>, </u>										
Blank Analyzed: 02/24/2009 (9B21046-B	BLK1)										
Surrogate: 2-Fluorobiphenyl	9.04			ug/l	10.0		90	50-120			
Surrogate: 2-Fluorophenol	15.3			ug/l	20.0		76	30-120			
Surrogate: Nitrobenzene-d5	7.86			ug/l	10.0		79	45-120			
Surrogate: Phenol-d6	15.6			ug/l	20.0		78	35-120			
Surrogate: Terphenyl-d14	10.4			ug/l	10.0		104	50-125			
LCS Analyzed: 02/24/2009 (9B21046-BS	51)										MNR1
Acenaphthene	6.62	0.50	0.10	ug/l	10.0		66	60-120			
Acenaphthylene	6.70	0.50	0.10	ug/l	10.0		67	60-120			
Aniline	8.40	10	0.30	ug/l	10.0		84	35-120			J
Anthracene	7.20	0.50	0.10	ug/l	10.0		72	65-120			
Benzidine	7.98	5.0	N/A	ug/l	10.0		80	30-160			
Benzo(a)anthracene	7.48	5.0	0.10	ug/l	10.0		75	65-120			
Benzo(a)pyrene	8.30	2.0	0.10	ug/l	10.0		83	55-130			
Benzo(b)fluoranthene	7.16	2.0	0.10	ug/l	10.0		72	55-125			
Benzo(g,h,i)perylene	8.96	5.0	0.10	ug/l	10.0		90	45-135			
Benzo(k)fluoranthene	6.86	0.50	0.10	ug/l	10.0		69	50-125			
Benzoic acid	6.80	20	3.0	ug/l	10.0		68	25-120			J
Benzyl alcohol	6.38	5.0	0.10	ug/l	10.0		64	50-120			
4-Bromophenyl phenyl ether	7.76	1.0	0.10	ug/l	10.0		78	60-120			
Butyl benzyl phthalate	7.56	5.0	0.70	ug/l	10.0		76	55-130			
4-Chloro-3-methylphenol	7.62	2.0	0.20	ug/l	10.0		76	60-120			
4-Chloroaniline	6.22	2.0	0.10	ug/l	10.0		62	55-120			
Bis(2-chloroethoxy)methane	6.62	0.50	0.10	ug/l	10.0		66	55-120			
Bis(2-chloroethyl)ether	6.50	0.50	0.10	ug/l	10.0		65	50-120			
Bis(2-chloroisopropyl)ether	6.40	0.50	0.10	ug/l	10.0		64	45-120			
Bis(2-ethylhexyl)phthalate	7.94	5.0	1.7	ug/l	10.0		79	65-130			
2-Chloronaphthalene	6.18	0.50	0.10	ug/l	10.0		62	60-120			
2-Chlorophenol	6.20	1.0	0.20	ug/l	10.0		62	45-120			
4-Chlorophenyl phenyl ether	6.84	0.50	0.10	ug/l	10.0		68	65-120			
Chrysene	7.12	0.50	0.10	ug/l	10.0		71	65-120			
Dibenz(a,h)anthracene	7.86	0.50	0.10	ug/l	10.0		79	50-135			
Dibenzofuran	6.92	0.50	0.10	ug/l	10.0		69	65-120			
Di-n-butyl phthalate	7.70	2.0	0.20	ug/l	10.0		77	60-125			
1,2-Dichlorobenzene	5.46	0.50	0.10	ug/l	10.0		55	40-120			
1,3-Dichlorobenzene	5.04	0.50	0.10	ug/l	10.0		50	35-120			
TD 44 . T .											

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Annual Outfall 011

Sampled: 02/16/09

Report Number: ISB1802

Received: 02/16/09

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
Batch: 9B21046 Extracted: 02/21/0	9										
Butch. / B21040 Extracted. 02/21/0											
LCS Analyzed: 02/24/2009 (9B21046-BS	S1)										MNR1
1,4-Dichlorobenzene	5.18	0.50	0.20	ug/l	10.0		52	35-120			
3,3'-Dichlorobenzidine	5.80	5.0	N/A	ug/l	10.0		58	45-135			
2,4-Dichlorophenol	6.46	2.0	0.20	ug/l	10.0		65	55-120			
Diethyl phthalate	6.80	1.0	0.10	ug/l	10.0		68	55-120			
2,4-Dimethylphenol	5.68	2.0	0.30	ug/l	10.0		57	40-120			
Dimethyl phthalate	7.10	0.50	0.10	ug/l	10.0		71	30-120			
4,6-Dinitro-2-methylphenol	8.12	5.0	0.20	ug/l	10.0		81	45-120			
2,4-Dinitrophenol	7.58	5.0	0.90	ug/l	10.0		76	40-120			
2,4-Dinitrotoluene	6.94	5.0	0.20	ug/l	10.0		69	65-120			
2,6-Dinitrotoluene	6.82	5.0	0.10	ug/l	10.0		68	65-120			
Di-n-octyl phthalate	7.96	5.0	0.10	ug/l	10.0		80	65-135			
1,2-Diphenylhydrazine/Azobenzene	7.22	1.0	0.10	ug/l	10.0		72	60-120			
Fluoranthene	7.46	0.50	0.10	ug/l	10.0		75	60-120			
Fluorene	7.06	0.50	0.10	ug/l	10.0		71	65-120			
Hexachlorobenzene	6.90	1.0	0.10	ug/l	10.0		69	60-120			
Hexachlorobutadiene	4.78	2.0	0.20	ug/l	10.0		48	40-120			
Hexachlorocyclopentadiene	6.26	5.0	0.10	ug/l	10.0		63	25-120			
Hexachloroethane	4.80	3.0	0.20	ug/l	10.0		48	35-120			
Indeno(1,2,3-cd)pyrene	8.22	2.0	0.10	ug/l	10.0		82	45-135			
Isophorone	5.88	1.0	0.10	ug/l	10.0		59	50-120			
2-Methylnaphthalene	6.74	1.0	0.10	ug/l	10.0		67	55-120			
2-Methylphenol	6.30	2.0	0.10	ug/l	10.0		63	50-120			
4-Methylphenol	6.38	5.0	0.20	ug/l	10.0		64	50-120			
Naphthalene	6.02	1.0	0.10	ug/l	10.0		60	55-120			
2-Nitroaniline	7.14	5.0	0.10	ug/l	10.0		71	65-120			
3-Nitroaniline	7.16	5.0	0.20	ug/l	10.0		72	60-120			
4-Nitroaniline	6.96	5.0	0.50	ug/l	10.0		70	55-125			
Nitrobenzene	6.48	1.0	0.10	ug/l	10.0		65	55-120			
2-Nitrophenol	6.20	2.0	0.10	ug/l	10.0		62	50-120			
4-Nitrophenol	7.04	5.0	2.5	ug/l	10.0		70	45-120			
N-Nitroso-di-n-propylamine	6.84	2.0	0.10	ug/l	10.0		68	45-120			
N-Nitrosodimethylamine	6.54	2.0	0.10	ug/l	10.0		65	45-120			
N-Nitrosodiphenylamine	7.80	1.0	0.10	ug/l	10.0		78	60-120			
Pentachlorophenol	7.38	2.0	0.10	ug/l	10.0		74	50-120			
Phenanthrene	6.90	0.50	0.10	ug/l	10.0		69	65-120			
				-							

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Annual Outfall 011

Sampled: 02/16/09

Report Number: ISB1802

Received: 02/16/09

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 9B21046 Extracted: 02/2	21/09										
LCS Analyzed: 02/24/2009 (9B2104	6-R\$1)										MNR1
Phenol	6.46	1.0	0.30	ug/l	10.0		65	40-120			MINKI
Pyrene	7.34	0.50	0.10	ug/l	10.0		73	55-125			
1,2,4-Trichlorobenzene	5.36	1.0	0.10	ug/l	10.0		54	45-120			
2,4,5-Trichlorophenol	7.14	2.0	0.20	ug/l	10.0		71	55-120			
2,4,6-Trichlorophenol	7.28	1.0	0.10	ug/l	10.0		73	55-120			
Surrogate: 2,4,6-Tribromophenol	13.6	1.0	0.10	ug/l	20.0		68	40-120			
Surrogate: 2-Fluorobiphenyl	6.66			ug/l	10.0		67	50-120			
Surrogate: 2-Fluorophenol	11.8			ug/l	20.0		59	30-120			
Surrogate: Nitrobenzene-d5	6.64			ug/l	10.0		66	45-120			
Surrogate: Phenol-d6	12.4			ug/l	20.0		62	35-120			
Surrogate: Terphenyl-d14	8.10			ug/l	10.0		81	50-125			
LCS Dup Analyzed: 02/24/2009 (9B	21046-RSD1)										
Acenaphthene	7.68	0.50	0.10	ug/l	10.0		77	60-120	15	20	
Acenaphthylene	7.72	0.50	0.10	ug/l	10.0		77	60-120	14	20	
Aniline	8.34	10	0.30	ug/l	10.0		83	35-120	1	30	J
Anthracene	8.58	0.50	0.10	ug/l	10.0		86	65-120	17	20	J
Benzidine	8.72	5.0	N/A	ug/l	10.0		87	30-160	9	35	
Benzo(a)anthracene	9.10	5.0	0.10	ug/l	10.0		91	65-120	20	20	
Benzo(a)pyrene	9.66	2.0	0.10	ug/l	10.0		97	55-130	15	25	
Benzo(b)fluoranthene	8.76	2.0	0.10	ug/l	10.0		88	55-125	20	25	
Benzo(g,h,i)perylene	9.76	5.0	0.10	ug/l	10.0		98	45-135	9	25	
Benzo(k)fluoranthene	8.24	0.50	0.10	ug/l	10.0		82	50-125	18	20	
Benzoic acid	7.98	20	3.0	ug/l	10.0		80	25-120	16	30	J
Benzyl alcohol	8.12	5.0	0.10	ug/l	10.0		81	50-120	24	20	R-7
4-Bromophenyl phenyl ether	9.08	1.0	0.10	ug/l	10.0		91	60-120	16	25	
Butyl benzyl phthalate	8.86	5.0	0.70	ug/l	10.0		89	55-130	16	20	
4-Chloro-3-methylphenol	8.56	2.0	0.20	ug/l	10.0		86	60-120	12	25	
4-Chloroaniline	8.30	2.0	0.10	ug/l	10.0		83	55-120	29	25	R-7
Bis(2-chloroethoxy)methane	8.32	0.50	0.10	ug/l	10.0		83	55-120	23	20	R-7
Bis(2-chloroethyl)ether	7.74	0.50	0.10	ug/l	10.0		77	50-120	17	20	
Bis(2-chloroisopropyl)ether	7.66	0.50	0.10	ug/l	10.0		77	45-120	18	20	
Bis(2-ethylhexyl)phthalate	9.40	5.0	1.7	ug/l	10.0		94	65-130	17	20	
2-Chloronaphthalene	7.28	0.50	0.10	ug/l	10.0		73	60-120	16	20	
2-Chlorophenol	7.40	1.0	0.20	ug/l	10.0		74	45-120	18	25	
4-Chlorophenyl phenyl ether	8.24	0.50	0.10	ug/l	10.0		82	65-120	19	20	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Annual Outfall 011

Report Number: ISB1802

Sampled: 02/16/09

Received: 02/16/09

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 9B21046 Extracted: 02/21/	09_										
LCS Dup Analyzed: 02/24/2009 (9B21)	,										
Chrysene	8.42	0.50	0.10	ug/l	10.0		84	65-120	17	20	
Dibenz(a,h)anthracene	9.22	0.50	0.10	ug/l	10.0		92	50-135	16	25	
Dibenzofuran	8.40	0.50	0.10	ug/l	10.0		84	65-120	19	20	
Di-n-butyl phthalate	9.26	2.0	0.20	ug/l	10.0		93	60-125	18	20	
1,2-Dichlorobenzene	6.46	0.50	0.10	ug/l	10.0		65	40-120	17	25	
1,3-Dichlorobenzene	5.94	0.50	0.10	ug/l	10.0		59	35-120	16	25	
1,4-Dichlorobenzene	5.98	0.50	0.20	ug/l	10.0		60	35-120	14	25	
3,3'-Dichlorobenzidine	7.12	5.0	N/A	ug/l	10.0		71	45-135	20	25	
2,4-Dichlorophenol	7.76	2.0	0.20	ug/l	10.0		78	55-120	18	20	
Diethyl phthalate	8.38	1.0	0.10	ug/l	10.0		84	55-120	21	30	
2,4-Dimethylphenol	7.34	2.0	0.30	ug/l	10.0		73	40-120	25	25	
Dimethyl phthalate	8.68	0.50	0.10	ug/l	10.0		87	30-120	20	30	
4,6-Dinitro-2-methylphenol	9.90	5.0	0.20	ug/l	10.0		99	45-120	20	25	
2,4-Dinitrophenol	9.34	5.0	0.90	ug/l	10.0		93	40-120	21	25	
2,4-Dinitrotoluene	8.52	5.0	0.20	ug/l	10.0		85	65-120	20	20	
2,6-Dinitrotoluene	8.46	5.0	0.10	ug/l	10.0		85	65-120	21	20	R-7
Di-n-octyl phthalate	9.22	5.0	0.10	ug/l	10.0		92	65-135	15	20	
1,2-Diphenylhydrazine/Azobenzene	8.52	1.0	0.10	ug/l	10.0		85	60-120	17	25	
Fluoranthene	8.82	0.50	0.10	ug/l	10.0		88	60-120	17	20	
Fluorene	8.46	0.50	0.10	ug/l	10.0		85	65-120	18	20	
Hexachlorobenzene	8.02	1.0	0.10	ug/l	10.0		80	60-120	15	20	
Hexachlorobutadiene	5.56	2.0	0.20	ug/l	10.0		56	40-120	15	25	
Hexachlorocyclopentadiene	7.52	5.0	0.10	ug/l	10.0		75	25-120	18	30	
Hexachloroethane	5.46	3.0	0.20	ug/l	10.0		55	35-120	13	25	
Indeno(1,2,3-cd)pyrene	9.54	2.0	0.10	ug/l	10.0		95	45-135	15	25	
Isophorone	7.96	1.0	0.10	ug/l	10.0		80	50-120	30	20	R-7
2-Methylnaphthalene	7.94	1.0	0.10	ug/l	10.0		79	55-120	16	20	
2-Methylphenol	7.76	2.0	0.10	ug/l	10.0		78	50-120	21	20	R-7
4-Methylphenol	7.82	5.0	0.20	ug/l	10.0		78	50-120	20	20	
Naphthalene	7.06	1.0	0.10	ug/l	10.0		71	55-120	16	20	
2-Nitroaniline	8.56	5.0	0.10	ug/l	10.0		86	65-120	18	20	
3-Nitroaniline	8.30	5.0	0.20	ug/l	10.0		83	60-120	15	25	
4-Nitroaniline	8.76	5.0	0.50	ug/l	10.0		88	55-125	23	20	R-7
Nitrobenzene	7.66	1.0	0.10	ug/l	10.0		77	55-120	17	25	
2-Nitrophenol	7.36	2.0	0.10	ug/l	10.0		74	50-120	17	25	

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

oro Michimida Avenue, Suite 20

Project ID: Annual Outfall 011

Sampled: 02/16/09

Report Number: ISB1802

Received: 02/16/09

METHOD BLANK/QC DATA

ACID & BASE/NEUTRALS BY GC/MS (EPA 625)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 9B21046 Extracted: 02/21/	/09										
LCS Dup Analyzed: 02/24/2009 (9B21	1046-BSD1)										
4-Nitrophenol	8.86	5.0	2.5	ug/l	10.0		89	45-120	23	30	
N-Nitroso-di-n-propylamine	8.88	2.0	0.10	ug/l	10.0		89	45-120	26	20	R-7
N-Nitrosodimethylamine	7.60	2.0	0.10	ug/l	10.0		76	45-120	15	20	
N-Nitrosodiphenylamine	9.12	1.0	0.10	ug/l	10.0		91	60-120	16	20	
Pentachlorophenol	8.92	2.0	0.10	ug/l	10.0		89	50-120	19	25	
Phenanthrene	8.18	0.50	0.10	ug/l	10.0		82	65-120	17	20	
Phenol	7.54	1.0	0.30	ug/l	10.0		75	40-120	15	25	
Pyrene	8.76	0.50	0.10	ug/l	10.0		88	55-125	18	25	
1,2,4-Trichlorobenzene	6.38	1.0	0.10	ug/l	10.0		64	45-120	17	20	
2,4,5-Trichlorophenol	8.24	2.0	0.20	ug/l	10.0		82	55-120	14	30	
2,4,6-Trichlorophenol	8.32	1.0	0.10	ug/l	10.0		83	55-120	13	30	
Surrogate: 2,4,6-Tribromophenol	15.9			ug/l	20.0		79	40-120			
Surrogate: 2-Fluorobiphenyl	7.68			ug/l	10.0		77	50-120			
Surrogate: 2-Fluorophenol	13.5			ug/l	20.0		68	30-120			
Surrogate: Nitrobenzene-d5	7.84			ug/l	10.0		78	45-120			
Surrogate: Phenol-d6	14.7			ug/l	20.0		74	35-120			
Surrogate: Terphenyl-d14	9.44			ug/l	10.0		94	50-125			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 011

618 Michillinda Avenue, Suite 200 Sampled: 02/16/09

Arcadia, CA 91007 Report Number: ISB1802 Received: 02/16/09

Attention: Bronwyn Kelly

METHOD BLANK/QC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
•		Ziiiii	WIDE	Cints	Level	resure	701LC	Limits	ICI D	Ziiiii	Quantities
Batch: 9B20074 Extracted: 02/20/0	<u> 19</u>										
Blank Analyzed: 02/21/2009 (9B20074-	BLK1)										
4,4'-DDD	ND	0.0050	0.0020	ug/l							
4,4'-DDE	ND	0.0050	0.0030	ug/l							
4,4'-DDT	ND	0.010	0.0040	ug/l							
Aldrin	ND	0.0050	0.0015	ug/l							
alpha-BHC	0.00634	0.0050	0.0025	ug/l							B, N2
beta-BHC	ND	0.010	0.0040	ug/l							
delta-BHC	ND	0.0050	0.0035	ug/l							
Dieldrin	ND	0.0050	0.0020	ug/l							
Endosulfan I	ND	0.0050	0.0020	ug/l							
Endosulfan II	ND	0.0050	0.0030	ug/l							
Endosulfan sulfate	ND	0.010	0.0030	ug/l							
Endrin	ND	0.0050	0.0020	ug/l							
Endrin aldehyde	ND	0.010	0.0020	ug/l							
Endrin ketone	ND	0.010	0.0030	ug/l							
gamma-BHC (Lindane)	ND	0.020	0.0030	ug/l							
Heptachlor	ND	0.010	0.0030	ug/l							
Heptachlor epoxide	ND	0.0050	0.0025	ug/l							
Methoxychlor	ND	0.0050	0.0035	ug/l							
Chlordane	ND	0.10	0.040	ug/l							
Toxaphene	ND	0.50	0.25	ug/l							
Surrogate: Decachlorobiphenyl	0.416			ug/l	0.500		83	45-120			
Surrogate: Tetrachloro-m-xylene	0.380			ug/l	0.500		76	35-115			
LCS Analyzed: 02/20/2009 (9B20074-B	SS1)										MNR1
4,4'-DDD	0.525	0.0050	0.0020	ug/l	0.500		105	55-120			
4,4'-DDE	0.489	0.0050	0.0030	ug/l	0.500		98	50-120			
4,4'-DDT	0.465	0.010	0.0040	ug/l	0.500		93	55-120			
Aldrin	0.424	0.0050	0.0015	ug/l	0.500		85	40-115			
alpha-BHC	0.494	0.0050	0.0025	ug/l	0.500		99	45-115			
beta-BHC	0.482	0.010	0.0040	ug/l	0.500		96	55-115			
delta-BHC	0.500	0.0050	0.0035	ug/l	0.500		100	55-115			
Dieldrin	0.474	0.0050	0.0020	ug/l	0.500		95	55-115			
Endosulfan I	0.438	0.0050	0.0020	ug/l	0.500		88	55-115			
Endosulfan II	0.471	0.0050	0.0030	ug/l	0.500		94	55-120			
Endosulfan sulfate	0.474	0.010	0.0030	ug/l	0.500		95	60-120			
Endrin	0.486	0.0050	0.0020	ug/l	0.500		97	55-115			
TD 44 . T .											

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Annual Outfall 011

Sampled: 02/16/09

Report Number: ISB1802

Received: 02/16/09

METHOD BLANK/QC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

		Reporting	MAN	T T •	Spike	Source	0/755	%REC	D.D.D.	RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 9B20074 Extracted: 02/20/09	<u> </u>										
Y 65 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4											10004
LCS Analyzed: 02/20/2009 (9B20074-BS	<i>'</i>										MNR1
Endrin aldehyde	0.555	0.010	0.0020	ug/l	0.500		111	50-120			
Endrin ketone	0.452	0.010	0.0030	ug/l	0.500		90	55-120			
gamma-BHC (Lindane)	0.451	0.020	0.0030	ug/l	0.500		90	45-115			
Heptachlor	0.442	0.010	0.0030	ug/l	0.500		88	45-115			
Heptachlor epoxide	0.440	0.0050	0.0025	ug/l	0.500		88	55-115			
Methoxychlor	0.478	0.0050	0.0035	ug/l	0.500		96	60-120			
Surrogate: Decachlorobiphenyl	0.393			ug/l	0.500		79	45-120			
Surrogate: Tetrachloro-m-xylene	0.359			ug/l	0.500		72	35-115			
LCS Dup Analyzed: 02/20/2009 (9B2007-	4-BSD1)										
4,4'-DDD	0.494	0.0050	0.0020	ug/l	0.500		99	55-120	6	30	
4,4'-DDE	0.453	0.0050	0.0030	ug/l	0.500		91	50-120	8	30	
4,4'-DDT	0.438	0.010	0.0040	ug/l	0.500		88	55-120	6	30	
Aldrin	0.396	0.0050	0.0015	ug/l	0.500		79	40-115	7	30	
alpha-BHC	0.454	0.0050	0.0025	ug/l	0.500		91	45-115	9	30	
beta-BHC	0.438	0.010	0.0040	ug/l	0.500		88	55-115	10	30	
delta-BHC	0.472	0.0050	0.0035	ug/l	0.500		94	55-115	6	30	
Dieldrin	0.452	0.0050	0.0020	ug/l	0.500		90	55-115	5	30	
Endosulfan I	0.419	0.0050	0.0020	ug/l	0.500		84	55-115	4	30	
Endosulfan II	0.454	0.0050	0.0030	ug/l	0.500		91	55-120	4	30	
Endosulfan sulfate	0.453	0.010	0.0030	ug/l	0.500		91	60-120	5	30	
Endrin	0.456	0.0050	0.0020	ug/l	0.500		91	55-115	6	30	
Endrin aldehyde	0.469	0.010	0.0020	ug/l	0.500		94	50-120	17	30	
Endrin ketone	0.436	0.010	0.0030	ug/l	0.500		87	55-120	4	30	
gamma-BHC (Lindane)	0.415	0.020	0.0030	ug/l	0.500		83	45-115	8	30	
Heptachlor	0.410	0.010	0.0030	ug/l	0.500		82	45-115	8	30	
Heptachlor epoxide	0.422	0.0050	0.0025	ug/l	0.500		84	55-115	4	30	
Methoxychlor	0.449	0.0050	0.0035	ug/l	0.500		90	60-120	6	30	
Surrogate: Decachlorobiphenyl	0.378			ug/l	0.500		76	45-120	-		
Surrogate: Tetrachloro-m-xylene	0.338			ug/l	0.500		68	35-115			
Surroguie. Tetrachioro-m-xytene	0.550			ug/i	0.500		00	33-113			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 011 MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200 Sampled: 02/16/09

Arcadia, CA 91007 Report Number: ISB1802 Attention: Bronwyn Kelly

Received: 02/16/09

METHOD BLANK/QC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

Amalada	D14	Reporting	MDI	T.T	Spike	Source	0/DEC	%REC	DDD	RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 9B23113 Extracted: 02/23/09	9_										
Blank Analyzed: 02/24/2009 (9B23113-F	BLK1)										
4,4'-DDD	ND	0.0050	0.0020	ug/l							
4,4'-DDE	ND	0.0050	0.0030	ug/l							
4,4'-DDT	ND	0.010	0.0040	ug/l							
Aldrin	ND	0.0050	0.0015	ug/l							
alpha-BHC	ND	0.0050	0.0025	ug/l							
beta-BHC	ND	0.010	0.0040	ug/l							
delta-BHC	ND	0.0050	0.0035	ug/l							
Dieldrin	ND	0.0050	0.0020	ug/l							
Endosulfan I	ND	0.0050	0.0020	ug/l							
Endosulfan II	ND	0.0050	0.0030	ug/l							
Endosulfan sulfate	ND	0.010	0.0030	ug/l							
Endrin	ND	0.0050	0.0020	ug/l							
Endrin aldehyde	ND	0.010	0.0020	ug/l							
Endrin ketone	ND	0.010	0.0030	ug/l							
gamma-BHC (Lindane)	ND	0.020	0.0030	ug/l							
Heptachlor	ND	0.010	0.0030	ug/l							
Heptachlor epoxide	ND	0.0050	0.0025	ug/l							
Methoxychlor	ND	0.0050	0.0035	ug/l							
Chlordane	ND	0.10	0.040	ug/l							
Toxaphene	ND	0.50	0.25	ug/l							
Surrogate: Decachlorobiphenyl	0.456			ug/l	0.500		91	45-120			
Surrogate: Tetrachloro-m-xylene	0.462			ug/l	0.500		92	35-115			
LCS Analyzed: 02/24/2009 (9B23113-BS	S1)										MNR1
4,4'-DDD	0.501	0.0050	0.0020	ug/l	0.500		100	55-120			
4,4'-DDE	0.510	0.0050	0.0030	ug/l	0.500		102	50-120			
4,4'-DDT	0.531	0.010	0.0040	ug/l	0.500		106	55-120			
Aldrin	0.470	0.0050	0.0015	ug/l	0.500		94	40-115			
alpha-BHC	0.534	0.0050	0.0025	ug/l	0.500		107	45-115			
beta-BHC	0.509	0.010	0.0040	ug/l	0.500		102	55-115			
delta-BHC	0.523	0.0050	0.0035	ug/l	0.500		105	55-115			
Dieldrin	0.493	0.0050	0.0020	ug/l	0.500		99	55-115			
Endosulfan I	0.457	0.0050	0.0020	ug/l	0.500		91	55-115			
Endosulfan II	0.492	0.0050	0.0030	ug/l	0.500		98	55-120			
Endosulfan sulfate	0.486	0.010	0.0030	ug/l	0.500		97	60-120			
Endrin	0.498	0.0050	0.0020	ug/l	0.500		100	55-115			
TestAmerica Irvine											

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Annual Outfall 011

Sampled: 02/16/09

Report Number: ISB1802

Received: 02/16/09

METHOD BLANK/QC DATA

ORGANOCHLORINE PESTICIDES (EPA 608)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 9B23113 Extracted: 02/23/09	<u>) </u>										
LCS Analyzed: 02/24/2009 (9B23113-BS	1)										MNR1
Endrin aldehyde	0.522	0.010	0.0020	ug/l	0.500		104	50-120			
Endrin ketone	0.469	0.010	0.0030	ug/l	0.500		94	55-120			
gamma-BHC (Lindane)	0.485	0.020	0.0030	ug/l	0.500		97	45-115			
Heptachlor	0.501	0.010	0.0030	ug/l	0.500		100	45-115			
Heptachlor epoxide	0.468	0.0050	0.0025	ug/l	0.500		94	55-115			
Methoxychlor	0.527	0.0050	0.0035	ug/l	0.500		105	60-120			
Surrogate: Decachlorobiphenyl	0.439			ug/l	0.500		88	45-120			
Surrogate: Tetrachloro-m-xylene	0.405			ug/l	0.500		81	35-115			
LCS Dup Analyzed: 02/24/2009 (9B2311	3-BSD1)										
4,4'-DDD	0.506	0.0050	0.0020	ug/l	0.500		101	55-120	1	30	
4,4'-DDE	0.507	0.0050	0.0030	ug/l	0.500		101	50-120	1	30	
4,4'-DDT	0.530	0.010	0.0040	ug/l	0.500		106	55-120	0	30	
Aldrin	0.467	0.0050	0.0015	ug/l	0.500		93	40-115	1	30	
alpha-BHC	0.510	0.0050	0.0025	ug/l	0.500		102	45-115	5	30	
beta-BHC	0.507	0.010	0.0040	ug/l	0.500		101	55-115	0	30	
delta-BHC	0.520	0.0050	0.0035	ug/l	0.500		104	55-115	1	30	
Dieldrin	0.490	0.0050	0.0020	ug/l	0.500		98	55-115	1	30	
Endosulfan I	0.456	0.0050	0.0020	ug/l	0.500		91	55-115	0	30	
Endosulfan II	0.487	0.0050	0.0030	ug/l	0.500		97	55-120	1	30	
Endosulfan sulfate	0.488	0.010	0.0030	ug/l	0.500		98	60-120	0	30	
Endrin	0.496	0.0050	0.0020	ug/l	0.500		99	55-115	0	30	
Endrin aldehyde	0.525	0.010	0.0020	ug/l	0.500		105	50-120	1	30	
Endrin ketone	0.470	0.010	0.0030	ug/l	0.500		94	55-120	0	30	
gamma-BHC (Lindane)	0.482	0.020	0.0030	ug/l	0.500		96	45-115	1	30	
Heptachlor	0.496	0.010	0.0030	ug/l	0.500		99	45-115	1	30	
Heptachlor epoxide	0.465	0.0050	0.0025	ug/l	0.500		93	55-115	1	30	
Methoxychlor	0.532	0.0050	0.0035	ug/l	0.500		106	60-120	1	30	
Surrogate: Decachlorobiphenyl	0.441			ug/l	0.500		88	45-120			
Surrogate: Tetrachloro-m-xylene	0.401			ug/l	0.500		80	35-115			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 011

Sampled: 02/16/09

Report Number: ISB1802

Received: 02/16/09

METHOD BLANK/QC DATA

TOTAL PCBS (EPA 608)

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 9B20074 Extracted: 02/20/09	<u>.</u>										
Blank Analyzed: 02/21/2009 (9B20074-B	LK1)										
Aroclor 1016	ND	0.50	0.25	ug/l							
Aroclor 1221	ND	0.50	0.25	ug/l							
Aroclor 1232	ND	0.50	0.25	ug/l							
Aroclor 1242	ND	0.50	0.25	ug/l							
Aroclor 1248	ND	0.50	0.25	ug/l							
Aroclor 1254	ND	0.50	0.25	ug/l							
Aroclor 1260	ND	0.50	0.25	ug/l							
Surrogate: Decachlorobiphenyl	0.480			ug/l	0.500		96	45-120			
LCS Analyzed: 02/20/2009 (9B20074-BS	2)										MNR1
Aroclor 1016	3.62	0.50	0.25	ug/l	4.00		91	50-115			
Aroclor 1260	3.73	0.50	0.25	ug/l	4.00		93	60-120			
Surrogate: Decachlorobiphenyl	0.476			ug/l	0.500		95	45-120			
LCS Dup Analyzed: 02/20/2009 (9B2007	4-BSD2)										
Aroclor 1016	3.72	0.50	0.25	ug/l	4.00		93	50-115	3	30	
Aroclor 1260	3.73	0.50	0.25	ug/l	4.00		93	60-120	0	25	
Surrogate: Decachlorobiphenyl	0.476			ug/l	0.500		95	45-120			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 011

Sampled: 02/16/09

Report Number: ISB1802

Received: 02/16/09

METHOD BLANK/QC DATA

HEXANE EXTRACTABLE MATERIAL

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 9B24074 Extracted: 02/24/09	<u>)</u>										
Blank Analyzed: 02/24/2009 (9B24074-B	SLK1)										
Hexane Extractable Material (Oil & Grease)	ND	5.0	1.4	mg/l							
LCS Analyzed: 02/24/2009 (9B24074-BS	1)										
Hexane Extractable Material (Oil & Grease)	19.2	5.0	1.4	mg/l	20.0		96	78-114			
LCS Dup Analyzed: 02/24/2009 (9B2407	(4-BSD1)										
Hexane Extractable Material (Oil & Grease)	18.8	5.0	1.4	mg/l	20.0		94	78-114	2	11	
Matrix Spike Analyzed: 02/24/2009 (9B2	24074-MS1)				Sou	rce: ISB26	524-01				
Hexane Extractable Material (Oil & Grease)	21.1	4.8	1.3	mg/l	19.1	3.73	90	78-114			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Annual Outfall 011

Sampled: 02/16/09

Report Number: ISB1802

Received: 02/16/09

METHOD BLANK/QC DATA

METALS

Analyta	Dogult	Reporting Limit	MDL	Units	Spike Level	Source	%REC	%REC	RPD	RPD Limit	Data
Analyte	Result	LIIIII	MDL	Units	Level	Resuit	70KEC	Limits	KPD	Limit	Qualifiers
Batch: 9B17091 Extracted: 02/17/09	_										
D	T T74\										
Blank Analyzed: 02/17/2009 (9B17091-B											
Arsenic	ND	10	7.0	ug/l							
Barium	ND	0.010	0.0060	mg/l							
Beryllium	ND	2.0	0.90	ug/l							
Boron	ND	0.050	0.020	mg/l							
Calcium	ND	0.10	0.050	mg/l							
Chromium	4.13	5.0	2.0	ug/l							J
Cobalt	ND	10	2.0	ug/l							
Iron	0.0168	0.040	0.015	mg/l							J
Magnesium	ND	0.020	0.012	mg/l							
Manganese	ND	20	7.0	ug/l							
Nickel	2.91	10	2.0	ug/l							B, J
Vanadium	ND	10	3.0	ug/l							
Zinc	ND	20	6.0	ug/l							
LCS Analyzed: 02/17/2009 (9B17091-BS	1)										
Arsenic	499	10	7.0	ug/l	500		100	85-115			
Barium	0.531	0.010	0.0060	mg/l	0.500		106	85-115			
Beryllium	478	2.0	0.90	ug/l	500		96	85-115			
Boron	0.497	0.050	0.020	mg/l	0.500		99	85-115			
Calcium	2.41	0.10	0.050	mg/l	2.50		96	85-115			
Chromium	477	5.0	2.0	ug/l	500		95	85-115			
Cobalt	461	10	2.0	ug/l	500		92	85-115			
Iron	0.487	0.040	0.015	mg/l	0.500		97	85-115			
Magnesium	2.41	0.020	0.012	mg/l	2.50		97	85-115			
Manganese	475	20	7.0	ug/l	500		95	85-115			
Nickel	486	10	2.0	ug/l	500		97	85-115			
Vanadium	497	10	3.0	ug/l	500		99	85-115			
Zinc	482	20	6.0	ug/l	500		96	85-115			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 011

Sampled: 02/16/09 Received: 02/16/09

Report Number: ISB1802

METHOD BLANK/QC DATA

METALS

		Reporting	MAN	***	Spike	Source		%REC	D.D.D.	RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 9B17091 Extracted: 02/17/09	<u> </u>										
Matrix Spike Analyzed: 02/17/2009 (9B1	7091-MS1)				Sou	rce: ISB1	812-01				
Arsenic	552	10	7.0	ug/1	500	48.0	101	70-130			
Barium	1.81	0.010	0.0060	mg/l	0.500	1.27	108	70-130			
Beryllium	483	2.0	0.90	ug/1	500	ND	97	70-130			
Boron	2.46	0.050	0.020	mg/l	0.500	1.91	109	70-130			
Calcium	39.5	0.10	0.050	mg/l	2.50	37.3	90	70-130			MHA
Chromium	483	5.0	2.0	ug/l	500	6.42	95	70-130			
Cobalt	467	10	2.0	ug/l	500	ND	93	70-130			
Iron	1.36	0.040	0.015	mg/l	0.500	0.753	122	70-130			
Magnesium	14.0	0.020	0.012	mg/l	2.50	11.5	98	70-130			MHA
Manganese	549	20	7.0	ug/l	500	68.9	96	70-130			
Nickel	487	10	2.0	ug/l	500	9.87	95	70-130			
Vanadium	502	10	3.0	ug/l	500	ND	100	70-130			
Zinc	511	20	6.0	ug/l	500	26.8	97	70-130			
Matrix Spike Analyzed: 02/17/2009 (9B1	7091-MS2)				Sou	rce: ISB1	812-02				
Arsenic	494	10	7.0	ug/l	500	ND	99	70-130			
Barium	0.841	0.010	0.0060	mg/l	0.500	0.323	104	70-130			
Beryllium	470	2.0	0.90	ug/l	500	ND	94	70-130			
Boron	1.20	0.050	0.020	mg/l	0.500	0.720	95	70-130			
Calcium	133	0.10	0.050	mg/l	2.50	133	20	70-130			MHA
Chromium	463	5.0	2.0	ug/l	500	4.84	92	70-130			
Cobalt	451	10	2.0	ug/l	500	ND	90	70-130			
Iron	0.961	0.040	0.015	mg/l	0.500	0.487	95	70-130			
Magnesium	35.7	0.020	0.012	mg/l	2.50	33.8	79	70-130			MHA
Manganese	519	20	7.0	ug/1	500	53.2	93	70-130			
Nickel	463	10	2.0	ug/l	500	4.44	92	70-130			
Vanadium	489	10	3.0	ug/l	500	3.53	97	70-130			
Zinc	511	20	6.0	ug/1	500	38.2	95	70-130			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Annual Outfall 011

Sampled: 02/16/09

Report Number: ISB1802

Received: 02/16/09

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
•		Limit	MDL	Circs	Level	resure	/UKEC	Limits	III D	Linne	Qualifiers
Batch: 9B17091 Extracted: 02/17/09	_										
Matrix Spike Dup Analyzed: 02/17/2009	(9B17091-M	SD1)			Sou	rce: ISB1	812-01				
Arsenic	545	10	7.0	ug/l	500	48.0	99	70-130	1	20	
Barium	1.78	0.010	0.0060	mg/l	0.500	1.27	101	70-130	2	20	
Beryllium	477	2.0	0.90	ug/l	500	ND	95	70-130	1	20	
Boron	2.40	0.050	0.020	mg/l	0.500	1.91	97	70-130	2	20	
Calcium	39.4	0.10	0.050	mg/l	2.50	37.3	85	70-130	0	20	MHA
Chromium	472	5.0	2.0	ug/l	500	6.42	93	70-130	2	20	
Cobalt	460	10	2.0	ug/l	500	ND	92	70-130	1	20	
Iron	1.25	0.040	0.015	mg/l	0.500	0.753	100	70-130	8	20	
Magnesium	13.8	0.020	0.012	mg/l	2.50	11.5	91	70-130	1	20	MHA
Manganese	541	20	7.0	ug/l	500	68.9	94	70-130	1	20	
Nickel	479	10	2.0	ug/l	500	9.87	94	70-130	2	20	
Vanadium	494	10	3.0	ug/l	500	ND	99	70-130	1	20	
Zinc	505	20	6.0	ug/l	500	26.8	96	70-130	1	20	
Batch: 9B17103 Extracted: 02/17/09	_										
Blank Analyzed: 02/17/2009 (9B17103-B	LK1)										
Antimony	ND	2.0	0.20	ug/l							
Cadmium	ND	1.0		_							
	ND	2.0	0.75								
Lead	ND	1.0	0.30	-							
Selenium	ND	2.0	0.30								
Silver	ND	1.0	0.30								
Thallium	ND	1.0	0.20	ug/l							
LCS Analyzed: 02/17/2009 (9B17103-BS	1)										
Antimony	76.1	2.0	0.20	ug/l	80.0		95	85-115			
Cadmium	75.4	1.0	0.11	ug/l	80.0		94	85-115			
Copper	75.3	2.0	0.75	ug/l	80.0		94	85-115			
Lead	76.5	1.0	0.30	ug/l	80.0		96	85-115			
Selenium	76.6	2.0	0.30	ug/l	80.0		96	85-115			
Silver	75.3	1.0	0.30	ug/l	80.0		94	85-115			
Thallium	68.4	1.0	0.20	ug/l	80.0		85	85-115			
Magnesium Manganese Nickel Vanadium Zinc Batch: 9B17103 Extracted: 02/17/09 Blank Analyzed: 02/17/2009 (9B17103-B Antimony Cadmium Copper Lead Selenium Silver Thallium LCS Analyzed: 02/17/2009 (9B17103-BS Antimony Cadmium Copper Lead Selenium Silver Thallium LCS Analyzed: 02/17/2009 (9B17103-BS) Antimony Cadmium Copper Lead Selenium Silver	13.8 541 479 494 505 LK1) ND ND ND ND ND ND ND T 1) 76.1 75.4 75.3 76.5 76.6 75.3	0.020 20 10 10 20 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0	0.012 7.0 2.0 3.0 6.0 0.20 0.11 0.75 0.30 0.30 0.20 0.20 0.11 0.75 0.30 0.30 0.30 0.30	mg/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l u	2.50 500 500 500 500 500 80.0 80.0 80.0 8	11.5 68.9 9.87 ND	91 94 99 96 96 95 94 96 96 94	70-130 70-130 70-130 70-130 70-130 85-115 85-115 85-115 85-115 85-115	1 1 2 1	20 20 20 20	MHA

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 011

Sampled: 02/16/09 Received: 02/16/09

Report Number: ISB1802

METHOD BLANK/QC DATA

METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 9B17103 Extracted: 02/17/09	_										
Matrix Spike Analyzed: 02/17/2009 (9B1	7103-MS1)				Sou	rce: ISB1	211-01				
Antimony	80.5	2.0	0.20	ug/l	80.0	0.249	100	70-130			
Cadmium	75.7	1.0	0.11	ug/l	80.0	ND	95	70-130			
Copper	74.1	2.0	0.75	ug/l	80.0	2.96	89	70-130			
Lead	76.0	1.0	0.30	ug/l	80.0	ND	95	70-130			
Selenium	81.1	2.0	0.30	ug/l	80.0	4.90	95	70-130			
Silver	73.3	1.0	0.30	ug/l	80.0	ND	92	70-130			
Thallium	68.4	1.0	0.20	ug/l	80.0	ND	85	70-130			
Matrix Spike Analyzed: 02/17/2009 (9B1	7103-MS2)				Sou	rce: ISB1	480-01				
Antimony	79.8	2.0	0.20	ug/l	80.0	0.319	99	70-130			
Cadmium	75.0	1.0	0.11	ug/l	80.0	ND	94	70-130			
Copper	72.3	2.0	0.75	ug/l	80.0	2.36	87	70-130			
Lead	76.8	1.0	0.30	ug/l	80.0	1.39	94	70-130			
Selenium	76.2	2.0	0.30	ug/l	80.0	1.18	94	70-130			
Silver	72.6	1.0	0.30	ug/l	80.0	ND	91	70-130			
Thallium	67.7	1.0	0.20	ug/l	80.0	ND	85	70-130			
Matrix Spike Dup Analyzed: 02/17/2009	(9B17103-MS	D1)			Sou	rce: ISB1	211-01				
Antimony	78.4	2.0	0.20	ug/l	80.0	0.249	98	70-130	3	20	
Cadmium	74.3	1.0	0.11	ug/l	80.0	ND	93	70-130	2	20	
Copper	74.2	2.0	0.75	ug/l	80.0	2.96	89	70-130	0	20	
Lead	76.0	1.0	0.30	ug/l	80.0	ND	95	70-130	0	20	
Selenium	81.1	2.0	0.30	ug/l	80.0	4.90	95	70-130	0	20	
Silver	71.9	1.0	0.30	ug/l	80.0	ND	90	70-130	2	20	
Thallium	68.5	1.0	0.20	ug/l	80.0	ND	86	70-130	0	20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Annual Outfall 011

Sampled: 02/16/09

Report Number: ISB1802

Received: 02/16/09

METHOD BLANK/QC DATA

DISSOLVED METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 9B20105 Extracted: 02/20/09											
	<u>-</u>										
Blank Analyzed: 02/21/2009-02/24/2009 (9B20105-BLF	(1)									
Arsenic	ND	10	7.0	ug/l							
Barium	ND	0.010	0.0060	mg/l							
Beryllium	ND	2.0	0.90	ug/l							
Boron	ND	0.050	0.020	mg/l							
Calcium	ND	0.10	0.050	mg/l							
Chromium	ND	5.0	2.0	ug/l							
Cobalt	ND	10	2.0	ug/l							
Iron	ND	0.040	0.015	mg/l							
Magnesium	ND	0.020	0.012	mg/l							
Manganese	ND	20	7.0	ug/l							
Nickel	ND	10	2.0	ug/l							
Vanadium	ND	10	3.0	ug/l							
Zinc	ND	20	6.0	ug/l							
LCS Analyzed: 02/21/2009-02/24/2009 (9	B20105-BS1)										
Arsenic	490	10	7.0	ug/l	500		98	85-115			
Barium	0.492	0.010	0.0060	mg/l	0.500		98	85-115			
Beryllium	479	2.0	0.90	ug/l	500		96	85-115			
Boron	0.473	0.050	0.020	mg/l	0.500		95	85-115			
Calcium	2.54	0.10	0.050	mg/l	2.50		101	85-115			
Chromium	488	5.0	2.0	ug/l	500		98	85-115			
Cobalt	478	10	2.0	ug/l	500		96	85-115			
Iron	0.508	0.040	0.015	mg/l	0.500		102	85-115			
Magnesium	2.50	0.020	0.012	mg/l	2.50		100	85-115			
Manganese	490	20	7.0	ug/l	500		98	85-115			
Nickel	483	10	2.0	ug/l	500		97	85-115			
Vanadium	484	10	3.0	ug/l	500		97	85-115			
Zinc	477	20	6.0	ug/l	500		95	85-115			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

Attention: Bronwyn Kelly

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Project ID: Annual Outfall 011

Sampled: 02/16/09

Report Number: ISB1802

Received: 02/16/09

METHOD BLANK/QC DATA

DISSOLVED METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 9B20105 Extracted: 02/20/09	<u>)</u>										
Matrix Spike Analyzed: 02/21/2009-02/2	•	,				rce: ISB1	822-01				
Arsenic	470	10	7.0	ug/l	500	ND	94	70-130			
Barium	0.508	0.010	0.0060	mg/l	0.500	0.0401	94	70-130			
Beryllium	468	2.0	0.90	ug/l	500	ND	94	70-130			
Boron	0.525	0.050	0.020	mg/l	0.500	0.0464	96	70-130			
Calcium	73.3	0.10	0.050	mg/l	2.50	70.6	109	70-130			MHA
Chromium	477	5.0	2.0	ug/l	500	2.34	95	70-130			
Cobalt	468	10	2.0	ug/l	500	ND	94	70-130			
Iron	0.532	0.040	0.015	mg/l	0.500	0.0482	97	70-130			
Magnesium	49.5	0.020	0.012	mg/l	2.50	47.2	93	70-130			MHA
Manganese	494	20	7.0	ug/l	500	13.6	96	70-130			
Nickel	468	10	2.0	ug/l	500	2.07	93	70-130			
Vanadium	475	10	3.0	ug/l	500	ND	95	70-130			
Zinc	461	20	6.0	ug/l	500	ND	92	70-130			
Matrix Spike Analyzed: 02/21/2009-02/2	4/2009 (9B2	0105-MS2)			Sou	rce: ISB1	823-01				
Arsenic	489	10	7.0	ug/l	500	ND	98	70-130			
Barium	0.500	0.010	0.0060	mg/l	0.500	0.0102	98	70-130			
Beryllium	479	2.0	0.90	ug/l	500	ND	96	70-130			
Boron	0.484	0.050	0.020	mg/l	0.500	0.0201	93	70-130			
Calcium	9.85	0.10	0.050	mg/l	2.50	7.36	100	70-130			
Chromium	492	5.0	2.0	ug/l	500	ND	98	70-130			
Cobalt	478	10	2.0	ug/l	500	ND	96	70-130			
Iron	1.62	0.040	0.015	mg/l	0.500	1.11	103	70-130			
Magnesium	3.78	0.020	0.012	mg/l	2.50	1.29	100	70-130			
Manganese	499	20	7.0	ug/l	500	10.0	98	70-130			
Nickel	487	10	2.0	ug/l	500	ND	97	70-130			
Vanadium	487	10	3.0	ug/l	500	3.58	97	70-130			
Zinc	478	20	6.0	ug/l	500	ND	96	70-130			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 011

Sampled: 02/16/09

Report Number: ISB1802 Received: 02/16/09

METHOD BLANK/QC DATA

DISSOLVED METALS

4 7 4	75 . 1 .	Reporting		T T •	Spike	Source	A/BEG	%REC	D.D.D.	RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 9B20105 Extracted: 02/20/09	_										
Matrix Spike Dup Analyzed: 02/21/2009-	02/24/2000 ((DP20105 M	2D1)		Sou	rce: ISB1	Q22 A1				
Arsenic	476	3 B20103- IVIS 10	7.0	na/1	500	ND	95	70-130	1	20	
Barium	0.516	0.010	0.0060	ug/l mg/l	0.500	0.0401	95 95	70-130	2	20	
Beryllium	468	2.0	0.90	ug/l	500	0.0401 ND	94	70-130	0	20	
Boron	0.522	0.050	0.020	mg/l	0.500	0.0464	95	70-130	1	20	
Calcium	72.8	0.10	0.020	mg/l	2.50	70.6	90	70-130	1	20	MHA
Chromium	484	5.0	2.0	ug/l	500	2.34	96	70-130	1	20	MIII
Cobalt	468	10	2.0	ug/l	500	ND	94	70-130	0	20	
Iron	0.531	0.040	0.015	mg/l	0.500	0.0482	97	70-130	0	20	
Magnesium	48.9	0.020	0.012	mg/l	2.50	47.2	70	70-130	1	20	MHA
Manganese	494	20	7.0	ug/l	500	13.6	96	70-130	0	20	
Nickel	474	10	2.0	ug/l	500	2.07	94	70-130	1	20	
Vanadium	475	10	3.0	ug/l	500	ND	95	70-130	0	20	
Zinc	461	20	6.0	ug/l	500	ND	92	70-130	0	20	
Batch: 9B20106 Extracted: 02/20/09											
Daten. 3DZ0100 Extracted. 02/20/03											
	_										
Blank Analyzed: 02/23/2009 (9B20106-B	_										
•	_	2.0	0.20	ug/l							
Blank Analyzed: 02/23/2009 (9B20106-Blank Analyzed: 02/23/2009) (9B20106-Blank Analyzed: 02/23/2009) (9B20106-Blank Analyzed: 02/23/2009)	LK1)	2.0 1.0	0.20 0.11	ug/l ug/l							
Antimony	LK1) ND			ug/l ug/l ug/l							
Antimony Cadmium	LK1) ND ND	1.0	0.11	ug/l							
Antimony Cadmium Copper	LK1) ND ND ND	1.0 2.0	0.11 0.75	ug/l ug/l							
Antimony Cadmium Copper Lead	LK1) ND ND ND ND ND	1.0 2.0 1.0	0.11 0.75 0.30	ug/l ug/l ug/l							
Antimony Cadmium Copper Lead Selenium	LK1) ND ND ND ND ND ND ND	1.0 2.0 1.0 2.0	0.11 0.75 0.30 0.30	ug/l ug/l ug/l ug/l							
Antimony Cadmium Copper Lead Selenium Silver Thallium	ND N	1.0 2.0 1.0 2.0 1.0	0.11 0.75 0.30 0.30 0.30	ug/l ug/l ug/l ug/l ug/l							
Antimony Cadmium Copper Lead Selenium Silver	ND N	1.0 2.0 1.0 2.0 1.0	0.11 0.75 0.30 0.30 0.30	ug/l ug/l ug/l ug/l ug/l	80.0		106	85-115			
Antimony Cadmium Copper Lead Selenium Silver Thallium LCS Analyzed: 02/23/2009 (9B20106-BS)	LK1) ND ND ND ND ND ND ND ND ND N	1.0 2.0 1.0 2.0 1.0 1.0	0.11 0.75 0.30 0.30 0.30 0.20	ug/l ug/l ug/l ug/l ug/l ug/l	80.0 80.0		106 104	85-115 85-115			
Antimony Cadmium Copper Lead Selenium Silver Thallium LCS Analyzed: 02/23/2009 (9B20106-BS) Antimony	ND N	1.0 2.0 1.0 2.0 1.0 1.0	0.11 0.75 0.30 0.30 0.30 0.20	ug/l ug/l ug/l ug/l ug/l ug/l							
Antimony Cadmium Copper Lead Selenium Silver Thallium LCS Analyzed: 02/23/2009 (9B20106-BS: Antimony Cadmium	ND N	1.0 2.0 1.0 2.0 1.0 1.0	0.11 0.75 0.30 0.30 0.30 0.20	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	80.0		104	85-115			
Antimony Cadmium Copper Lead Selenium Silver Thallium LCS Analyzed: 02/23/2009 (9B20106-BS) Antimony Cadmium Copper	ND N	1.0 2.0 1.0 2.0 1.0 1.0 2.0 1.0 2.0	0.11 0.75 0.30 0.30 0.30 0.20 0.20	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	80.0 80.0		104 98	85-115 85-115			
Antimony Cadmium Copper Lead Selenium Silver Thallium LCS Analyzed: 02/23/2009 (9B20106-BS) Antimony Cadmium Copper Lead	ND N	1.0 2.0 1.0 2.0 1.0 1.0 2.0 1.0 2.0 1.0	0.11 0.75 0.30 0.30 0.30 0.20 0.20 0.11 0.75 0.30	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	80.0 80.0 80.0		104 98 105	85-115 85-115 85-115			

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 011

Sampled: 02/16/09

Report Number: ISB1802

Received: 02/16/09

METHOD BLANK/QC DATA

DISSOLVED METALS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 9B20106 Extracted: 02/20/09											
	•										
Matrix Spike Analyzed: 02/23/2009 (9B20)106-MS1)				Sou	rce: ISB1	693-01				
Antimony	85.2	2.0	0.20	ug/l	80.0	0.558	106	70-130			
Cadmium	82.0	1.0	0.11	ug/l	80.0	ND	103	70-130			
Copper	78.5	2.0	0.75	ug/l	80.0	1.32	97	70-130			
Lead	83.6	1.0	0.30	ug/l	80.0	ND	105	70-130			
Selenium	74.0	2.0	0.30	ug/l	80.0	ND	92	70-130			
Silver	79.7	1.0	0.30	ug/l	80.0	ND	100	70-130			
Thallium	83.6	1.0	0.20	ug/l	80.0	ND	105	70-130			
Matrix Spike Analyzed: 02/23/2009 (9B20)106-MS2)				Sou	rce: ISB1	694-01				
Antimony	87.7	2.0	0.20	ug/l	80.0	0.567	109	70-130			
Cadmium	82.9	1.0	0.11	ug/l	80.0	ND	104	70-130			
Copper	76.3	2.0	0.75	ug/l	80.0	1.12	94	70-130			
Lead	81.7	1.0	0.30	ug/l	80.0	ND	102	70-130			
Selenium	74.5	2.0	0.30	ug/l	80.0	ND	93	70-130			
Silver	80.1	1.0	0.30	ug/l	80.0	ND	100	70-130			
Thallium	81.6	1.0	0.20	ug/l	80.0	ND	102	70-130			
Matrix Spike Dup Analyzed: 02/23/2009	(9B20106-MS	D1)			Sou	rce: ISB1	693-01				
Antimony	88.4	2.0	0.20	ug/l	80.0	0.558	110	70-130	4	20	
Cadmium	84.3	1.0	0.11	ug/l	80.0	ND	105	70-130	3	20	
Copper	78.9	2.0	0.75	ug/l	80.0	1.32	97	70-130	0	20	
Lead	83.6	1.0	0.30	ug/l	80.0	ND	105	70-130	0	20	
Selenium	75.7	2.0	0.30	ug/l	80.0	ND	95	70-130	2	20	
Silver	82.0	1.0	0.30	ug/l	80.0	ND	102	70-130	3	20	
Thallium	83.1	1.0	0.20	ug/l	80.0	ND	104	70-130	1	20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 011

Sampled: 02/16/09

Report Number: ISB1802

Received: 02/16/09

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 9B16057 Extracted: 02/16/09											
<u> </u>	=										
Blank Analyzed: 02/16/2009 (9B16057-Bl	LK1)										
Chloride	ND	0.50	0.25	mg/l							
Nitrate-N	ND	0.11	0.060	mg/l							
Nitrite-N	ND	0.15	0.090	mg/l							
Nitrate/Nitrite-N	ND	0.26	0.15	mg/l							
Sulfate	ND	0.50	0.20	mg/l							
LCS Analyzed: 02/16/2009 (9B16057-BS1	1)										
Chloride	4.54	0.50	0.25	mg/l	5.00		91	90-110			M-3
Nitrate-N	1.11	0.11	0.060	mg/l	1.13		98	90-110			
Nitrite-N	1.55	0.15	0.090	mg/l	1.52		102	90-110			
Sulfate	9.13	0.50	0.20	mg/l	10.0		91	90-110			
Matrix Spike Analyzed: 02/16/2009 (9B1	6057-MS1)				Sou	rce: ISB1	719-03				
Nitrate-N	4.50	0.11	0.060	mg/l	1.13	3.20	115	80-120			
Nitrite-N	2.06	0.15	0.090	mg/l	1.52	ND	136	80-120			MI
Sulfate	16.3	0.50	0.20	mg/l	10.0	5.12	112	80-120			
Matrix Spike Analyzed: 02/17/2009 (9B1	6057-MS2)				Sou	rce: ISB1	806-01				
Chloride	13.9	0.50	0.25	mg/l	5.00	8.38	111	80-120			
Nitrate-N	1.88	0.11	0.060	mg/l	1.13	0.664	108	80-120			
Nitrite-N	1.70	0.15	0.090	mg/l	1.52	ND	112	80-120			
Sulfate	15.8	0.50	0.20	mg/l	10.0	4.54	113	80-120			
Matrix Spike Dup Analyzed: 02/16/2009	(9B16057-M	SD1)			Sou	rce: ISB1	719-03				
Nitrate-N	4.51	0.11	0.060	mg/l	1.13	3.20	116	80-120	0	20	
Nitrite-N	2.07	0.15	0.090	mg/l	1.52	ND	136	80-120	1	20	M1
Sulfate	16.0	0.50	0.20	mg/l	10.0	5.12	109	80-120	2	20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 011

Sampled: 02/16/09

Report Number: ISB1802 Received: 02/16/09

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source	%REC	%REC	RPD	RPD Limit	Data
Analyte		Limit	MDL	Units	Level	Result	%KEC	Limits	KPD	Limit	Qualifiers
Batch: 9B16073 Extracted: 02/16/09	_										
Blank Analyzed: 02/16/2009 (9B16073-Bl	LK1)										
Chromium VI	ND	1.0	0.25	ug/l							
LCS Analyzed: 02/16/2009 (9B16073-BS1	1)										
Chromium VI	50.8	1.0	0.25	ug/l	50.0		102	90-110			
Matrix Spike Analyzed: 02/16/2009 (9B1	6073-MS1)				Sou	rce: ISB1	796-01				
Chromium VI	55.1	1.0	0.25	ug/l	50.0	ND	110	90-110			
Matrix Spike Dup Analyzed: 02/16/2009	(9B16073-M	SD1)			Sou	rce: ISB1	796-01				
Chromium VI	57.8	1.0	0.25	ug/l	50.0	ND	116	90-110	5	10	M1
Batch: 9B17060 Extracted: 02/17/09	-										
Blank Analyzed: 02/17/2009 (9B17060-Bl	LK1)										
Perchlorate	ND	1.0	0.90	ug/l							
LCS Analyzed: 02/17/2009 (9B17060-BS1	1)										
Perchlorate	23.8	1.0	0.90	ug/l	25.0		95	85-115			
Matrix Spike Analyzed: 02/17/2009 (9B1	7060-MS1)				Sou	rce: ISB1	802-01				
Perchlorate	23.9	1.0	0.90	ug/l	25.0	ND	96	80-120			
Matrix Spike Dup Analyzed: 02/17/2009	(9B17060-M	SD1)			Sou	rce: ISB1	802-01				
Perchlorate	23.1	1.0	0.90	ug/l	25.0	ND	92	80-120	3	20	
Batch: 9B17067 Extracted: 02/17/09	<u>-</u>										
Blank Analyzed: 02/17/2009 (9B17067-Bl	LK1)										
Turbidity	ND	1.0	0.040	NTU							

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 011

Sampled: 02/16/09

Report Number: ISB1802

Received: 02/16/09

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 9B17067 Extracted: 02/17/09	_										
Dunlicate Analyzad, 02/17/2000 (0D170C)	7 DUD1)				Con	rce: ISB1	015 01				
Duplicate Analyzed: 02/17/2009 (9B1706') Turbidity	20.2	1.0	0.040	NTU	Sou	20.9	015-01		3	20	
Duplicate Analyzed: 02/17/2009 (9B1706'	7-DHP2)				Sou	rce: ISB1	831-01				
Turbidity	430	20	0.80	NTU	500	440	031 01		2	20	
Batch: 9B17074 Extracted: 02/17/09											
	-										
Blank Analyzed: 02/17/2009 (9B17074-B)	,	0.10	0.020	/1							,
Fluoride	0.0351	0.10	0.020	mg/l							J
LCS Analyzed: 02/17/2009 (9B17074-BS1	*										
Fluoride	0.994	0.10	0.020	mg/l	1.00		99	90-110			
Matrix Spike Analyzed: 02/17/2009 (9B1	7074-MS1)				Sou	rce: ISB1	785-01				
Fluoride	0.959	0.10	0.020	mg/l	1.00	0.100	86	80-120			
Matrix Spike Dup Analyzed: 02/17/2009	(9B17074-MS	D 1)			Sou	rce: ISB1	785-01				
Fluoride	0.911	0.10	0.020	mg/l	1.00	0.100	81	80-120	5	20	
Batch: 9B17089 Extracted: 02/17/09	_										
Blank Analyzed: 02/17/2009 (9B17089-Bl	· ·										
Total Cyanide	ND	5.0	2.2	ug/l							
LCS Analyzed: 02/17/2009 (9B17089-BS)	1)										
Total Cyanide	206	5.0	2.2	ug/l	200		103	90-110			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 011

Sampled: 02/16/09

Report Number: ISB1802

Received: 02/16/09

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 9B17089 Extracted: 02/17/09	_										
N	- 000 3.534)				~	TODA	= 0< 04				
Matrix Spike Analyzed: 02/17/2009 (9B1	,	- 0				rce: ISB1		50.115			
Total Cyanide	206	5.0	2.2	ug/l	200	ND	103	70-115			
Matrix Spike Dup Analyzed: 02/17/2009	(9B17089-MS	D1)			Sou	rce: ISB1	786-01				
Total Cyanide	199	5.0	2.2	ug/l	200	ND	99	70-115	4	15	
Batch: 9B17098 Extracted: 02/17/09											
Daten. 9D17070 Extracted. 02/17/07	-										
Blank Analyzed: 02/17/2009 (9B17098-Bl	LK1)										
Surfactants (MBAS)	ND	0.10	0.025	mg/l							
LCS Analyzed: 02/17/2009 (9B17098-BS)	n										
Surfactants (MBAS)	0.253	0.10	0.025	mg/l	0.250		101	90-110			
, ,		0.10	0.020	1119/1				, o 110			
Matrix Spike Analyzed: 02/17/2009 (9B1	,					rce: ISB1					
Surfactants (MBAS)	0.0697	0.10	0.025	mg/l	0.250	ND	28	50-125			M2, J
Matrix Spike Dup Analyzed: 02/17/2009	(9B17098-MS	D 1)			Sou	rce: ISB1	834-01				
Surfactants (MBAS)	0.0709	0.10	0.025	mg/l	0.250	ND	28	50-125	2	20	M2, J
Batch: 9B17105 Extracted: 02/17/09											
Battat. 7B17103 Extracted. 02/17/07	-										
Blank Analyzed: 02/17/2009 (9B17105-Bl	LK1)										
Residual Chlorine	ND	0.10	0.10	mg/l							
Duplicate Analyzed: 02/17/2009 (9B1710:	5-DIJP1)				Sou	rce: ISB1	785-01				
Residual Chlorine	ND	0.10	0.10	mg/l	Sou	ND	.,50 01			20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 011

Sampled: 02/16/09

Report Number: ISB1802

Received: 02/16/09

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 9B17161 Extracted: 02/17/09	_										
Blank Analyzed: 02/22/2009 (9B17161-Bl	LK1)										
Biochemical Oxygen Demand	ND	2.0	0.50	mg/l							
LCS Analyzed: 02/22/2009 (9B17161-BS)	1)										
Biochemical Oxygen Demand	178	100	25	mg/l	198		90	85-115			
LCS Dup Analyzed: 02/22/2009 (9B1716)	I-BSD1)										
Biochemical Oxygen Demand	186	100	25	mg/l	198		94	85-115	4	20	
Batch: 9B18054 Extracted: 02/18/09	-										
Duplicate Analyzed: 02/18/2009 (9B1805	4-DUP1)				Sou	rce: ISB1	930-01				
Specific Conductance	255	1.0	1.0	umhos/cm		257			1	5	
Duplicate Analyzed: 02/18/2009 (9B1805	4-DUP2)				Sou	rce: ISB1	758-01				
Specific Conductance	326	1.0	1.0	umhos/cm		324			1	5	
Reference Analyzed: 02/18/2009 (9B1805	4-SRM1)										
Specific Conductance	982	1.0	1.0	umhos/cm	994		99	90-110			
Batch: 9B18065 Extracted: 02/18/09	-										
Blank Analyzed: 02/18/2009 (9B18065-Bl	LK1)										
Total Dissolved Solids	ND	10	10	mg/l							
LCS Analyzed: 02/18/2009 (9B18065-BS)	1)										
Total Dissolved Solids	982	10	10	mg/l	1000		98	90-110			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 011

Sampled: 02/16/09

Report Number: ISB1802

Received: 02/16/09

METHOD BLANK/QC DATA

INORGANICS

		Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 9B18065 Extracted: 02/18/09	<u>) </u>										
Duplicate Analyzed: 02/18/2009 (9B1806	,				Sou	rce: ISB1	930-01				
Total Dissolved Solids	177	10	10	mg/l		172			3	10	
Batch: 9B21068 Extracted: 02/21/09	<u>-</u>										
Blank Analyzed: 02/21/2009 (9B21068-B	LK1)										
Total Suspended Solids	ND	10	1.0	mg/l							
LCS Analyzed: 02/21/2009 (9B21068-BS	1)										
Total Suspended Solids	990	10	1.0	mg/l	1000		99	85-115			
Duplicate Analyzed: 02/21/2009 (9B2106	8-DUP1)				Sou	rce: ISB1	750-01				
Total Suspended Solids	105	10	1.0	mg/l		106			1	10	
Batch: 9B24001 Extracted: 02/24/09	<u>-</u>										
Blank Analyzed: 02/24/2009 (9B24001-B	LK1)										
Total Organic Carbon	ND	1.0	0.50	mg/l							
LCS Analyzed: 02/24/2009 (9B24001-BS	1)										
Total Organic Carbon	9.88	1.0	0.50	mg/l	10.0		99	90-110			
Matrix Spike Analyzed: 02/24/2009 (9B2	4001-MS1)				Sou	rce: ISB1	736-03				
Total Organic Carbon	10.7	1.0	0.50	mg/l	5.00	4.90	116	80-120			
Matrix Spike Dup Analyzed: 02/24/2009	(9B24001-N	ISD1)			Sou	rce: ISB1	736-03				
Total Organic Carbon	10.8	1.0	0.50	mg/l	5.00	4.90	119	80-120	1	20	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 011

Sampled: 02/16/09

Report Number: ISB1802 Received: 02/16/09

METHOD BLANK/QC DATA

INORGANICS

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 9B24128 Extracted: 02/24/09											
Blank Analyzed: 02/24/2009 (9B24128-Bl	LK1)										
Ammonia-N (Distilled)	ND	0.50	0.50	mg/l							
LCS Analyzed: 02/24/2009 (9B24128-BS1)										
Ammonia-N (Distilled)	10.6	0.50	0.50	mg/l	10.0		106	80-115			
Matrix Spike Analyzed: 02/24/2009 (9B24	1128-MS1)				Sou	rce: ISB1	703-01				
Ammonia-N (Distilled)	10.1	0.50	0.50	mg/l	10.0	0.560	95	70-120			
Matrix Spike Dup Analyzed: 02/24/2009	9B24128-MSD	1)			Sou	rce: ISB1	703-01				
Ammonia-N (Distilled)	10.1	0.50	0.50	mg/l	10.0	0.560	95	70-120	0	15	

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 011

Sampled: 02/16/09

Report Number: ISB1802

Received: 02/16/09

METHOD BLANK/QC DATA

CFR136A 608

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 9064381 Extracted: 03/05/09	.										
Blank Analyzed: 03/10/2009 (D9C050000	381B)				Sou	rce:					
alpha-BHC	ND	0.05	0.0053	ug/L				-			
Surrogate: Decachlorobiphenyl	0.19			ug/L	0.2		97	32-144			
Surrogate: Tetrachloro-m-xylene	0.13			ug/L	0.2		65	52-117			
LCS Analyzed: 03/10/2009 (D9C0500003	81C)				Sou	rce:					
alpha-BHC	0.479	0.05	0.0053	ug/L	0.5		96	66-115	7	50	
Surrogate: Decachlorobiphenyl	0.201			ug/L	0.2		100	68-122			
Surrogate: Tetrachloro-m-xylene	0.111			ug/L	0.2		55	54-115			
LCS Dup Analyzed: 03/10/2009 (D9C050	000381L)				Sou	rce:					
alpha-BHC	0.514	0.05	0.0053	ug/L	0.5		103	66-115	7	50	
Surrogate: Decachlorobiphenyl	0.204			ug/L	0.2		102	68-122			
Surrogate: Tetrachloro-m-xylene	0.16			ug/L	0.2		80	54-115			

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 011

Sampled: 02/16/09

Report Number: ISB1802

Received: 02/16/09

METHOD BLANK/QC DATA

MCAWW 245.1

Analyte	Result	Reporting Limit	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 9050174 Extracted: 02/19/09	<u>-</u>										
Blank Analyzed: 02/19/2009 (D9B19000	0174B)				Sou	rce:					
Mercury	ND	0.2	0.027	ug/L				-			
LCS Analyzed: 02/19/2009 (D9B190000	174C)				Sou	rce:					
Mercury	4.78	0.2	0.027	ug/L	5		96	90-110			
Matrix Spike Dup Analyzed: 02/19/2009	(D9B1901190	01D)			Sou	rce: D9B	19011900	1			
Mercury	4.29	0.2	0.027	ug/L	5	0.032	85	90-110	0	10	N
Matrix Spike Analyzed: 02/19/2009 (D9	B190119001S)				Sou	rce: D9B	19011900	1			
Mercury	4.29	0.2	0.027	ug/L	5	0.032	85	90-110	0	10	N

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing

618 Michillinda Avenue, Suite 200

Arcadia, CA 91007

Attention: Bronwyn Kelly

Project ID: Annual Outfall 011

Sampled: 02/16/09

Report Number: ISB1802

Received: 02/16/09

METHOD BLANK/QC DATA

MCAWW 245.1-DISS

]	Reporting			Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	MDL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 9050182 Extracted: 02/19/09											
Blank Analyzed: 02/19/2009 (D9B190000	182B)				Sou	rce:					
Mercury	ND	0.2	0.027	ug/L				-			
LCS Analyzed: 02/19/2009 (D9B1900001	82C)				Sou	rce:					
Mercury	4.63	0.2	0.027	ug/L	5		93	90-110			
Matrix Spike Dup Analyzed: 02/19/2009	(D9B19011900	1D)			Sou	rce: D9B	19011900	1			
Mercury	4.55	0.2	0.027	ug/L	5	0.03	90	90-110	0	10	
Matrix Spike Analyzed: 02/19/2009 (D9B	190119001S)				Sou	rce: D9B	19011900	1			
Mercury	4.57	0.2	0.027	ug/L	5	0.03	91	90-110	0	10	

MWH-Pasadena/Boeing

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: Annual Outfall 011

618 Michillinda Avenue, Suite 200 Sampled: 02/16/09

Arcadia, CA 91007 Report Number: ISB1802 Received: 02/16/09
Attention: Bronwyn Kelly

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

LabNumber	Analysis	Analyte	Units	Result	MRL	Compliance Limit
ISB1802-01	1664-HEM	Hexane Extractable Material (Oil & Greas	mg/l	1.52	4.7	10
ISB1802-01	608-Pest Boeing 001/002 Q (LL)	alpha-BHC	ug/l	0.012	0.0094	0.01
ISB1802-01	624-Boeing 001/002 Q (Fr113+X),	L1,1-Dichloroethene	ug/l	0	0.50	3.2
ISB1802-01	624-Boeing 001/002 Q (Fr113+X),	ITrichloroethene	ug/l	0	0.50	5
ISB1802-01	625+NDMA, LL	2,4,6-Trichlorophenol	ug/l	0	0.94	6.5
ISB1802-01	625+NDMA, LL	2,4-Dinitrotoluene	ug/l	0	4.7	9.1
ISB1802-01	625+NDMA, LL	Bis(2-ethylhexyl)phthalate	ug/l	1.43	4.7	4
ISB1802-01	625+NDMA, LL	N-Nitrosodimethylamine	ug/l	0	1.9	8.1
ISB1802-01	625+NDMA, LL	Pentachlorophenol	ug/l	1.49	1.9	8.2
ISB1802-01	Antimony-200.8	Antimony	ug/l	0.65	2.0	6
ISB1802-01	Arsenic-200.7	Arsenic	ug/l	7.93	10	10
ISB1802-01	Barium-200.7	Barium	mg/l	0.068	0.010	1
ISB1802-01	Beryllium-200.7	Beryllium	ug/l	0.46	2.0	4
ISB1802-01	BOD - SM5210B	Biochemical Oxygen Demand	mg/l	2.07	2.0	20
ISB1802-01	Cadmium-200.8	Cadmium	ug/l	0.18	1.0	2
ISB1802-01	Chloride - 300.0	Chloride	mg/l	12	0.50	150
ISB1802-01	Chlorine, Residual (330.5)	Residual Chlorine	mg/l	0	0.10	0.1
ISB1802-01	Chromium VI-218.6	Chromium VI	ug/l	0	1.0	8.1
ISB1802-01	Chromium-200.7	Chromium	ug/l	25	5.0	8.1
ISB1802-01	Copper-200.8	Copper	ug/l	6.45	2.0	7.1
ISB1802-01	Cyanide, Total-4500CN-E (5ppb)	Total Cyanide	ug/l	-1	5.0	4.3
ISB1802-01	Fluoride SM4500F,C	Fluoride	mg/l	0.12	0.10	1.6
ISB1802-01	Iron-200.7	Iron	mg/l	11	0.040	0.3
ISB1802-01	Lead-200.8	Lead	ug/l	7.15	1.0	2.6
ISB1802-01	Manganese-200.7	Manganese	ug/l	148	20	50
ISB1802-01	MBAS - SM5540-C	Surfactants (MBAS)	mg/l	0.0078	0.10	0.5
ISB1802-01	Nickel-200.7	Nickel	ug/l	14	10	35
ISB1802-01	Nitrate-N, 300.0	Nitrate-N	mg/l	0.97	0.11	8
ISB1802-01	Nitrite-N, 300.0	Nitrite-N	mg/l	0	0.15	1
ISB1802-01	Nitrogen, NO3+NO2 -N	Nitrate/Nitrite-N	mg/l	0.97	0.26	8
ISB1802-01	Selenium-200.8	Selenium	ug/l	0	2.0	4.1
ISB1802-01	Settleable Solids - SM2540F	Total Settleable Solids	ml/l	0	0.10	0.1
ISB1802-01	Silver-200.8	Silver	ug/l	0.088	1.0	2
ISB1802-01	Sulfate-300.0	Sulfate	mg/l	4.33	0.50	300
ISB1802-01	TDS - SM2540C	Total Dissolved Solids	mg/l	77	10	950
ISB1802-01	Thallium-200.8	Thallium	ug/l	0.089	1.0	2
ISB1802-01	TSS - SM2540D	Total Suspended Solids	mg/l	156	10	15

TestAmerica Irvine

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sampled: 02/16/09

Project ID: Annual Outfall 011

MWH-Pasadena/Boeing 618 Michillinda Avenue, Suite 200

Arcadia, CA 91007 Report Number: ISB1802 Received: 02/16/09

Attention: Bronwyn Kelly

ISB1802-01 Zinc-200.7 Zinc ug/l 60 20 54

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

						Compliance
LabNumber	Analysis	Analyte	Units	Result	MRL	Limit
ISB1802-01RE1	608-Pest Boeing 001/002 Q (LL)	alpha-BHC	ug/l	0.0023	0.0094	0.01

Compliance Check

The results obtained from the analytical testing of this data set were checked against compliance limits received from the client. Any results at or above the compliance limits appear in bold on this page.

					Compliance
LabNumber	Analysis Analyte	Units	Result	MRL	Limit
ISB1802-02	624-Boeing 001/002 Q (Fr113+X), L1,1-Dichloroethene	ug/l	0	0.50	3.2
ISB1802-02	624-Boeing 001/002 Q (Fr113+X), LTrichloroethene	ug/l	0	0.50	5

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 011

618 Michillinda Avenue, Suite 200 Sampled: 02/16/09

Arcadia, CA 91007 Report Number: ISB1802 Received: 02/16/09

Attention: Bronwyn Kelly

DATA QUALIFIERS AND DEFINITIONS

B Analyte was detected in the associated Method Blank.

C Calibration Verification recovery was above the method control limit for this analyte. Analyte not detected, data

not impacted.

HFT The holding time for this test is immediate. It was analyzed in the laboratory as soon as possible after receipt.

HTV Holding Time Violation

J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the

Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.

L Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above the acceptance limits.

Analyte not detected, data not impacted.

The MS and/or MSD were above the acceptance limits due to sample matrix interference. See Blank Spike (LCS).

M13 The sample spiked had a pH of less than 2. 2-Chloroethylvinylether degrades under acidic conditions.

M2 The MS and/or MSD were below the acceptance limits due to sample matrix interference. See Blank Spike (LCS).

M-3 Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was accepted based on acceptable recovery in the Blank Spike (LCS).

M7 The MS and/or MSD were above the acceptance limits. See Blank Spike (LCS).

MHA Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recovery

information. See Blank Spike (LCS).

MNR1 There was no MS/MSD analyzed with this batch due to insufficient sample volume. See Blank Spike/Blank Spike

Duplicate.

N Spike sample recovery is outside control limits.

N2 See corrective action report.

P The sample, as received, was not preserved in accordance to the referenced analytical method.

P9 This analyte has been shown to degrade upon preservation with HCl and cannot accurately be quantitated.

pH pH = =4pHa pH = 5

R-7 LFB/LFBD RPD exceeded the acceptance limit. Recovery met acceptance criteria.

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

ADDITIONAL COMMENTS

For TICs:

M1

All identifications are tentative and concentrations are estimates based upon spectral comparison to the EPA/NIH library.

For 1,2-Diphenylhydrazine:

The result for 1,2-Diphenylhydrazine is based upon the reading of its breakdown product, Azobenzene.

For GRO (C4-C12):

GRO (C4-C12) is quantitated against a gasoline standard. Quantitation begins immediately following the methanol peak.

For Extractable Fuel Hydrocarbons (EFH, DRO, ORO):

Unless otherwise noted, Extractable Fuel Hydrocarbons (EFH, DRO, ORO) are quantitated against a Diesel Fuel Standard.

TestAmerica Irvine

Joseph Doak Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 011

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007
Report Number: ISB1802
Sampled: 02/16/09
Received: 02/16/09

Arcadia, CA 91007 Report Number: ISB1802
Attention: Bronwyn Kelly

Certification Summary

TestAmerica Irvine

Method	Matrix	Nelac	California
EPA 120.1	Water	X	X
EPA 1664A	Water	X	X
EPA 180.1	Water	X	X
EPA 200.7-Diss	Water	X	X
EPA 200.7	Water	X	X
EPA 200.8-Diss	Water	X	X
EPA 200.8	Water	X	X
EPA 218.6	Water	X	X
EPA 300.0	Water	X	X
EPA 314.0	Water	X	X
EPA 330.5	Water	X	X
EPA 608	Water	X	X
EPA 624 (MOD.)	Water		X
EPA 624	Water	X	X
EPA 625	Water	X	X
EPA 8015 Mod.	Water	X	X
EPA 8015B	Water	X	X
EPA 8260B-SIM	Water	X	X
Filtration	Water	N/A	N/A
SM 2540D	Water	X	X
SM 4500-F-C	Water	X	X
SM2340B-Diss	Water		
SM2340B	Water	X	X
SM2540C	Water	X	
SM2540F	Water	X	X
SM4500-CN-C,E	Water	X	X
SM4500NH3-C	Water	X	X
SM5210B	Water	X	X
SM5310B	Water	X	X
SM5540-C	Water	X	X

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

Subcontracted Laboratories

TestAmerica Irvine

Joseph Doak Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 011

618 Michillinda Avenue, Suite 200 Sampled: 02/16/09

Arcadia, CA 91007 Report Number: ISB1802 Received: 02/16/09

Attention: Bronwyn Kelly

Aquatic Testing Laboratories-SUB California Cert #1775

4350 Transport Street, Unit 107 - Ventura, CA 93003

Analysis Performed: Bioassay-7 dy Chrnic

Samples: ISB1802-01

Analysis Performed: Bioassay-Acute 96hr

Samples: ISB1802-01

TestAmerica Denver

4955 Yarrow Street - Arvada, CO 80002

Method Performed: CFR136A 608

Samples: ISB1802-01

Method Performed: MCAWW 245.1

Samples: ISB1802-01

Method Performed: MCAWW 245.1-DISS

Samples: ISB1802-01

TestAmerica St. Louis

13715 Rider Trail North - Earth City, MO 63045

Analysis Performed: Gamma Spec

Samples: ISB1802-01

Analysis Performed: Gross Alpha

Samples: ISB1802-01

Analysis Performed: Gross Beta

Samples: ISB1802-01

Analysis Performed: Radium, Combined

Samples: ISB1802-01

Analysis Performed: Strontium 90

Samples: ISB1802-01

Analysis Performed: Tritium

Samples: ISB1802-01

Analysis Performed: Uranium, Combined

Samples: ISB1802-01

Truesdail Laboratories-SUB California Cert #1237

14201 Franklin Avenue - Tustin, CA 92680

Analysis Performed: Hydrazine Samples: ISB1802-01

TestAmerica Irvine

Joseph Doak Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-Pasadena/Boeing Project ID: Annual Outfall 011

618 Michillinda Avenue, Suite 200
Arcadia, CA 91007
Report Number: ISB1802
Sampled: 02/16/09
Received: 02/16/09

Arcadia, CA 91007 Report Number: ISB1802 Attention: Bronwyn Kelly

Vista Analytical NELAC Cert #02102CA, California Cert #1640, Nevada Cert #CA-413

1104 Windfield Way - El Dorado Hills, CA 95762 Analysis Performed: 1613-Dioxin-HR-Alta

Samples: ISB1802-01

FORM TSB(807 Page 1 of 2	ANALYSIS REQUIRED	A-HEM) overable) S C) S-M, F, 1 1 2 2) 2 2) 2 2) 2 3 3 3 3 3 4 7 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	leable Solids leable Solids leable Solids leable Solids of Solids all corps of Grease (166 solide (164 solide) (164 solide	Sett CC () Sett CON Sulf Sulf Sulf Sulf Sulf Sulf Sulf Sulf	24 TAT – Fe exceeded on 2/3/08	24 TAT	X 24 TAT	×	×	×	×	×	×	X 24 TAT	X 24 TAT	×	×	*	×	Date/Time: Tum around Time: (c 24 Hours	Date/Time: 48 Hours 10 Days 72 Hours Normal	ntegrity: (che	Data Requirements: (check)	No Level IV All Level IV
= CUSTODY FORM		, Fe, Mn, r, Ni, Se,	al Recoverable Pb, Hg, B, Ba, As, Be, Cd, Ci Tl, Zn, Co, V, 1	Cu, Sb, Rg,	X X	× 81/2 ((10)		34,38	4A, 4B.	2	₽ 9	7A, 7B 💰	8A, 8B •	• 6	10A, 10B •	11 •	12A, 12B •	13A, 13B •	Received By	Received By		Received By	
CHAIN OF	Project:	Boéing-SSFL NPDES Annual Outfall 011	Phone Number: (626) 568-6691 Fax Number: (626) 568-6515	Sampling Preservative Date/Time	14:30 HNO3	HNOs	None	None	None	HCI	NaOH	None	None	None	None	None	H ₂ SO ₄	None	None None	ime:	2,20		Date/Time:	_
a Version 12/20/07			. Kelly	Container # of Type Cont.	-	1L Poly 1	500 ml 1 Poly	1L Poly 1	1L Amber 2	1L Amber 2	500 ml 1 Poly 1	1L Poly 1	500 ml 2 Poly	500 ml 2 Poly	500 ml 1 Poly	500 ml 2 Poly	500 ml 1 Poly	nber 2	1L Amber 2	Date/	Dat 1	20/1/6/02	Dat	
Test America version 12/20/07	Client Name/Address:	MWH-Arcadia 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007 Test America Contact: Joseph Doak	Project Manager: Bronwyn Kelly 3 mmn/scm C Sampler, 13 mm 19 c	Sample Sample Description Matrix	W	Outfall 011 W Dup	Outfall 011 W	Outfall 011 W	Outfall 011 W	Outfall 011 W	Outfall 011 W	Outfall 011 W	Outfall 011 W	Outfall 011 W	Outfall 011 W	Outfall 011 W	Outfall 011 W	×		Relinquished By	Relinquished By	Jan 19	Relinquished By	

Test America Version 12/20/07	neric	a Version	12/20/	20,	$\overline{0}$	CHAIN	OF	CUSTODY	D	Ţ	FORM	5						Page 2 of 2
Client Name/Address:	ne/Addre	es:		Project:	t:							AN	ANALYSIS REQUIRED	3 RE(NIII BI			
MWH-Arcadia 618 Michillinda Avenue, Suite 200 Arcadia, CA 91007	cadia nda Aven v 91007	rue, Suite 2	00	Boeing Annus	g-SSF al Out	Boeing-SSFL NPDES Annual Outfall 011	တ	+ s	CAE	uc	······································	(E-H) 7, Total 85 adium n	U.I Ve) 1				als: Cu, In, Sb, Se, Ag,	
Test America Contact: Joseph Doak	a Contact	: Joseph D	oak					zr uc	7+50	grbc) mui 0.20 m S. M S. A anina	C1-C				Met M, 9 ⁻	
Project Manager: Bronwyn Kelly	ınager:	Bronwyn I	Kelly		Num	ber:		<u>-</u> rec				titit (9) C uiba (1.8) (1.8)	20 5				ved a, F Cr,	
Sampler: A same	A souled	1000		(626) 568-6691 Fax Number: (626) 568-6515	568-6¢ umber 568-65	391 : 315		58 624 + ohexane	+ 7 29 s(Dioxane Il Organi	ubisəA lı)shqlA sa (0.00e), (0.3 Sr-90), Sr-90; henida (1.0 or 903), (0.409),	.0), K-40 11.1) 	2 - dss	əsəip - g	omethyl O bns e:	I Dissolv Hg, B, B 3e, Cd, ('n, Co, V	
Sample Description	Sample	Container Type	# of Cont.	Sampling Date/Time	-	Preservative	Bottle #	⊃e1∃				Beta (906) Com (903) 228	or 90 or 90				stoT I ,dq I ,aA	Comments
Outfall 011	*	VOAs	rò	14:30	HCI		14A, 14B, 14C, 14D, ▶ 14E	×										
Outfall 011	×	VOAs	е		≥	None	15A, 15B,		×									
Outfall 011	>	VOAs	ო		무		16A, 16B,			×								
Outfall 011	W	250 ml Glass	1		HCI	~	17			×								
Outfall 011	W	150 ml Poly	-		2	None	18 •				×							TRC Exceeded on 2/3/08
Outfall 011	М	2.5 Gal Cube 500 ml Amber			28	None None	19A 19B					×						Unfiltered and unpreserved analysis
Outfall 011	W	1L Amber	2		None	ne	20A, 20B •						×					
Outfall 011	M	VOAs	-		모		21A •							×				
Outfall 011 Dup	*	VOAs	Ø		DH_		21B, 21C•							×				
Outfall 011	Μ	1L Amber	-		None	ne	22A •								×			
Outfall 011 Dup	M	1L Amber	-	•	None	ne	22B •								×			
Outfall 011	M	1L Amber	7		None	ne	23A, 23B •									×		
Outfall 011	W	1 Gal Cube	2	D	None	ne	24A, 24B 🗕		,							×		
Outfall 011	≯	1L Poly	-	2-16-09	None None	ne	25		<u> </u>								×	Filter w/in 24hrs of receipt at lab. Fe Exceeded on 2/3/08
Trip Blanks	W	VOAs	3		HC		26A, 26B, 26C	×										
Trip Blanks	W	VOAs	3		None		27A, 27B, 27C •		×									
Relinquished By	By (7	3	Date/Time: といり句		1615	Received By	200	12	[]	Date/	Date/Time:	3		\	Tu 24	nd Time: (c	sh
Relinquished By	a	CO THE	11	Date/Time	7	5%9	Received By				Date	Date/Time:				\$ 2 8 	4e nous to Days 72 Hours Normal Sample Integrity: (check)	ays X ())
Relinquished By				Date/Time:	.: 6:		Received By				Date	Date/Time:	25,25			T SS	Intact On Ice: Data Requirements: (check) No Level IV All Level IV	110e: X (? ()
								1					7			Ä	NPDES Level IV	

LABORATORY REPORT

Date:

February 25, 2009

Client:

TestAmerica, Irvine

17461 Derian Ave., Suite 100

Irvine, CA 92614 Attn: Joseph Doak Aquatic Testing Laboratories

"dedicated to providing quality aquatic toxicity testing"

4350 Transport Street, Unit 107 Ventura, CA 93003

(805) 650-0546 FAX (805) 650-0756

CA DOHS ELAP Cert. No.: 1775

Laboratory No.:

A-09021707

Sample I.D.:

ISB1802-01 (Outfall 011)

Sample Control:

The sample was received by ATL within the recommended hold time, chilled and with the chain of custody record attached. Testing conducted on only one sample per

client instruction (rain runoff sample).

Date Sampled:

02/16/09

Date Received:

02/17/09

Temp. Received:

 $0.5^{\circ}\mathrm{C}$

Chlorine (TRC):

0.0 mg/l

Date Tested:

02/17/09 to 02/24/09

Sample Analysis:

The following analyses were performed on your sample:

Fathead Minnow 96hr Percent Survival Bioassay (EPA Method 2000.0), *Ceriodaphnia dubia* Survival and Reproduction Test (EPA Method 1002).

Attached are the test data generated from the analysis of your sample.

Result Summary:

Acute:	<u>Survival</u>	TUa
Fathead Minnow:	100%	0.0
Chronic:	NOEC	TUc
Ceriodaphnia Survival:	100%	1.0
Ceriodaphnia Reproduction:	100%	1.0

Quality Control:

Reviewed and approved by:

Joseph A. LeMay (Laboratory Director

FATHEAD MINNOW PERCENT SURVIVAL TEST EPA Method 2000.0

Lab No.: A-09021707-001

Client/ID: TestAmerica - ISB1802-01

Start Date: 02/17/2009

TEST SUMMAR	1	٦	٩	١		١	i										ľ								į																						i	i	١	į	į	į	į	į	١	١	١	١	į	į	į	į	į	١	į	į	į	į	١	١	١	١	١	į	١	١			١	١	١	١									l			ŀ									į	١	١												١				١	١	١	١	ľ	Ī								í	1	/	,	١	ļ	١	ì	I	1			
-------------	---	---	---	---	--	---	---	--	--	--	--	--	--	--	--	--	---	--	--	--	--	--	--	--	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	--	---	---	---	---	--	--	--	--	--	--	--	--	---	--	--	---	--	--	--	--	--	--	--	--	---	---	---	--	--	--	--	--	--	--	--	--	--	--	---	--	--	--	---	---	---	---	---	---	--	--	--	--	--	--	--	---	---	---	---	---	---	---	---	---	---	--	--	--

Species: Pimephales promelas.

Age: 14 (1-14) days. Regulations: NPDES.

Test solution volume: 250 ml. Feeding: prior to renewal at 48 hrs.

Number of replicates: 2.

Dilution water: Moderately hard reconstituted water.

Photoperiod: 16/8 hrs light/dark.

Source: In-laboratory Culture. Test type: Static-Renewal.

Test Protocol: EPA-821-R-02-012. Endpoints: Percent Survival at 96 hrs.

Test chamber: 600 ml beakers. Temperature: 20 +/- 1°C.

Number of fish per chamber: 10. QA/QC Batch No.: RT-090203.

TEST DATA

		°C	DO	"II	# D	Dead	Analyst & Time
			DO	рН	A	В	of Readings
INITIAL	Control	20.6	8.8	811)	0	0	f-
INITIAL	100%	19.7	10.8	7.5	0	0	1400
24 Hr	Control	19.7	8.4	24	_0	()	R
24 FI	100%	19.9	8.3	68	/)	0	1300
48 Hr	Control	20-0	7.7	7.3	0	0	R
46 П	100%	20.0	7-7	6.9	0	0	1300
Renewal	Control	20.4	8.9	7-7	0	0	L.
Kellewal	100%	19.7	10.6	6.5	0	0	1300
72 Hr	Control	19.5	810	7.3	0	0	R
/2 HI	100%	19.8	7-6	6.8	\mathcal{O}	0	1230
06 11	Control	20,2	7.9	26	0	0	R
96 Hr	100%	20.5	7-9	6.9		0	1400

Comments:

Sample as received: Chlorine: 0.0 mg/l; pH: 7.5; Conductivity: 65 umho; Temp: 0.5°C;

DO: ///// mg/l; Alkalinity: /8 mg/l; Hardness: 3 / mg/l; NH₃-N: 0/3 mg/l. Sample aerated moderately (approx. 500 ml/min) to raise or lower DO? Yes / NO

Control: Alkalinity: 6/ mg/l; Hardness: 94 mg/l; Conductivity: 300 umho.

Test solution aerated (not to exceed 100 bubbles/min) to maintain DO >4.0 mg/l? Yes / No)

Sample used for renewal is the original sample kept at 0-6°C with minimal headspace.

Dissolved Oxygen (DO) readings in mg/l O₂.

RESULTS

Percent Survival In: Control: 100% Sample: 60 %

CERIODAPHNIA SURVIVAL AND REPRODUCTION TEST

- Test and Results Summary
- Data Summary and Statistical Analyses
- Raw Test Data: Water Quality & Test Organism Measurements

CERIODAPHNIA CHRONIC BIOASSAY EPA METHOD 1002.0

Lab No.: A-09021707-001 Date Tested: 02/17/09 to 02/24/09

Client/ID: Test America – ISB1802-01 (Outfall 011)

TEST SUMMARY

Test type: Daily static-renewal. Endpoints: Survival and Reproduction.

Species: Ceriodaphnia dubia.

Source: In-laboratory culture.

Age: < 24 hrs; all released within 8 hrs. Food: .1 ml YTC, algae per day. Test vessel size: 30 ml. Test solution volume: 15 ml.

Number of test organisms per vessel: 1. Number of replicates: 10.

Temperature: 25 +/- 1°C. Photoperiod: 16/8 hrs. light/dark cycle.

Dilution water: Mod. hard reconstituted (MHRW). Test duration: 7 days.

QA/QC Batch No.: RT-090203. Statistics: ToxCalc computer program.

RESULTS SUMMARY

Sample Concentration	Percent Survival	Mean Number of Young Per Female
Control	100%	17.4
100% Sample	100%	25.9
* Sample not s	statistically significantly le	ess than Control.

CHRONIC TOXICITY

Survival NOEC	100%
Survival TUc	1.0
Reproduction NOEC	100%
Reproduction TUc	1.0

QA/QC TEST ACCEPTABILITY

Parameter	Result
Control survival ≥80%	Pass (100% survival)
≥15 young per surviving control female	Pass (17.4 young)
≥60% surviving controls had 3 broods	Pass (80% with 3 broods)
PMSD < 47% for reproduction; if > 47% and no toxicity at IWC, the test must be repeated	Pass (PMSD = 16.6%)
Statistically significantly different concentrations relative difference > 13%	Pass (no concentration significantly different)
Concentration response relationship acceptable	Pass (no significant response at concentration tested)

BERTALISM AND		***************************************	Cerioda	aphnia Sur	vival and	Reprodu	iction Tes	t-7 Day S	urvival		
Start Date:	2/17/2009	15:00	Test ID:	9021707c	THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TRANSPORT NAMED IN COLUMN TWO IS NAMED I		Sample ID):	ISB1802-0)1	
End Date:	2/24/2009	15:00	Lab ID:	CAATL-Aq	uatic Tes	ting Labs	Sample Ty		EFF2-Indu		
Sample Date:	2/16/2009	14:30	Protocol:	FWCH 4TI	H-EPA-82	1-R-02-0	Test Spec	ies:	CD-Cerioo	laphnia dubia	
Comments:											
Conc-%	1	2	3	4	5	6	7	8	9	10	
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

				Not			Fisher's	1-Tailed	Isot	onic
Conc-%	Mean	N-Mean	Resp	Resp	Total	N	Exact P	Critical	Mean	N-Mean
D-Control	1.0000	1.0000	0	10	10	10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1.0000	1.0000
100	1.0000	1.0000	0	10	10	10	1.0000	0.0500	1.0000	1.0000

Hypothesis	Test (1-tail, (0.05)	NOEC	LOEC	ChV	TU	***************************************	***************************************	*****			
Fisher's Exa			100	>100		1						
Treatments	vs D-Control				ACAL MANAGEMENT OF THE OWNER.							
					ar Interpo	lation (20	0 Res	ample	s)			
Point	%	SD	95%	CL	Skew		*********	·				
IC05	>100											
IC10	>100											
IC15	>100						1	.0 T				
IC20	>100						n	.9				
IC25	>100							- 1				
IC40	>100						0	.8 -				
IC50	>100	and the state of t		**********			0	1.7				
							ψn	16.1				
							Su	··				1
							ရွိ ၀	0.5				
							Response	.4 -				
								1.3				
							0	1.2				
							0					
								4			_	
							0	0.0		——————————————————————————————————————		
								0		50	100	150
										Do	se %	

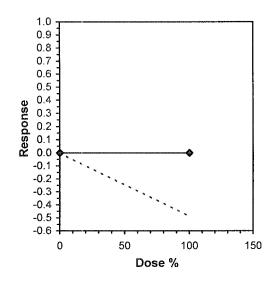
100

1.0000

1.0000

1.0000

1.0000


	······································		Cerioda	aphnia Su	rvival and	Reprod	uction Tes	st-Repro	duction	
Start Date:	2/17/2009	15:00	Test ID:	9021707c			Sample ID);	ISB1802-0)1
End Date:	2/24/2009	15:00	Lab ID:	CAATL-Aq	uatic Test	ting Labs	Sample Ty	/pe:	EFF2-Indu	ıstrial
Sample Date:	2/16/2009	14:30	Protocol:	FWCH 4TI	H-EPA-82	1-R-02-0	Test Spec	ies:	CD-Cerioo	laphnia dubia
Comments:										
Conc-%	1	2	3	4	5	6	7	8	9	10
D-Control	27.000	18.000	18.000	11.000	17.000	20.000	16.000	16.000	12.000	19.000
100	28,000	27.000	24.000	30.000	27.000	25.000	28.000	27.000	22.000	21.000

				Transform: Untransformed					1-Tailed		Isotonic	
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean
 D-Control	17.400	1.0000	17.400	11.000	27.000	25.444	10				21.650	1.0000
100	25.900	1.4885	25.900	21.000	30.000	10.989	10	-5.107	1.734	2.886	21.650	1.0000

Auxiliary Tests	Statistic	rianikoonawanna punisi manananikun	Critical		Skew	Kurt
Shapiro-Wilk's Test indicates normal distribution (p > 0.05)	0.94304		0.905		0.47809	1.59213
F-Test indicates equal variances (p = 0.20)	2.41975		6.54109			
Hypothesis Test (1-tail, 0.05)	MSDu	MSDp	MSB	MSE	F-Prob	df
Homoscedastic t Test indicates no significant differences	2.88606	0.16587	361.25	13.85	7.4E-05	1, 18
Treatments vs D. Control						

	Interpola	4 4	IAAA F	7	1
linear	INTERNALS	ITION !	76HU F	zacam	NIARI

Point	%	SD	95% CL	Skew
IC05	>100			
IC10	>100			
IC15	>100			
IC20	>100			
IC25	>100			
IC40	>100			
IC50	>100			

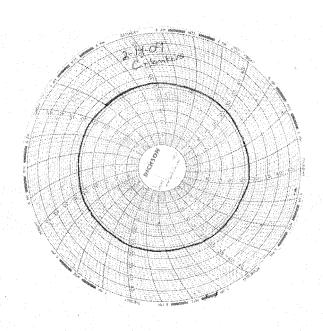
CERIODAPHNIA DUBIA CHRONIC BIOASSAY EPA METHOD 1002.0 Raw Data Sheet

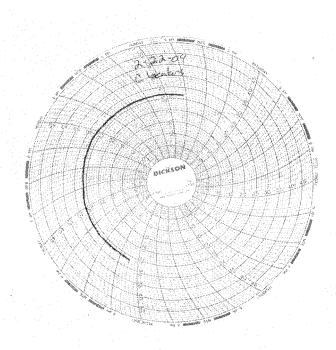
Lab No.: A-09021707-001

Client ID: TestAmerica - ISB1802-01 Start Date: 02/17/2009 DAY 1 DAY 2 DAY 3 DAY 4 DAY 5 DAY 6 DAY 7 0 hr 24hr 0 hr 24lır 0 hr 24hr Analyst Initials: Time of Readings: 1/200 1500 522 16 a DO 9,1 рΗ 8.0 Control 24/2 2S.2 Temp DO 100% pΗ Temp Additional Parameters Control 100% Sample Conductivity (umohms) 301) Alkalinity (mg/l CaCO₃) 3/ Hardness (mg/l CaCO₃) CO. Ammonia (mg/l NH3-N) Source of Neonates Replicate: В C Α Ε G Н 41 B2 03 G3 Brood ID: ナて HINumber of Young Produced No. Live Total Live Analyst Sample Day Young Adults Initials C A В D E Н G J 1 2 W 3 4 3 22 4 0 Control 5 4 6 7 6 8 7 20 Total 1 2 3 4 100% 5 95 89 6 13 10 7 38 25 Total 259

Circled fourth brood not used in statistical analysis

7th day only used if <60% of the surviving control females have produced their third brood.




Test Temperature Chart

Test No: A-090217

Date Tested: 02/17/09 to 02/24/09

Acceptable Range: 25+/- 1°C

CHAIN OF CUSTODY

SUBCONTRACT ORDER

TestAmerica Irvine

ISB1802

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

RECEIVING LABORATORY:

Aquatic Testing Laboratories-SUB 4350 Transport Street, Unit 107

Ventura, CA 93003 Phone: (805) 650-0546

Fax: (805) 650-0756

Project Location: CA - CALIFORNIA

Ice: 8/ N Receipt Temperature: ____°C

Analysis	Units	Due	Expires	Comments
Sample ID: ISB1802-01	Water		Sampled: 02/16/09 14:30	
Bioassay-7 dy Chrnic	N/A	02/25/09	02/18/09 02:30	Cerio, EPA/821-R02-013, Sub to AqTox
Bioassay-Acute 96hr	% Survival	02/25/09	02/18/09 02:30	Labs FH minnow, EPA/821-R02-012, Sub to AgTox Labs
Level 4 Data Package	N/A	02/25/09	03/16/09 14:30	AQTOX Labs
Containers Supplied:				
1 gal Poly (AU)	1 gal Poly (AV)			

Released/By

Released By

Date/Time

Date/Time

Received By

REFERENCE TOXICANT DATA

Fathead Minnow Acute Toxicity Test Reference Toxicant Data

FATHEAD MINNOW ACUTE Method 2000.0 Reference Toxicant - SDS

QA/QC Batch No.: RT-090203

TEST SUMMARY

Species: Pimephales promelas.

Age: <u>//</u> days old. Regulations: NPDES.

Test chamber volume: 250 ml. Feeding: Prior to renewal at 48 hrs.

Temperature: 20 +/- 1°C. Number of replicates: 2. Dilution water: MHSF.

Source: In-lab culture. Test type: Static-Renewal.

Test Protocol: EPA-821-R-02-012.

Endpoints: LC50 at 96 hrs. Test chamber: 600 ml beakers.

Aeration: None.

Number of organisms per chamber: 10.

Photoperiod: 16/8 hrs light/dark.

TEST DATA

		INITIAI	J			24 Hr					48 Hr		
Date/Time:	2-3	-09	1430	2-4	1-09		19	100	2-5	09	133()		
Analyst:		<u>~~</u>				<u> </u>			R				
	°C	DO	pН	°C	DO	рН	# D	Dead	°C	DO		# D	ead
		50	pii		DO	pm	A	В		DO	рН	A	В
Control	20,7	86	22	20.2	8.0	2.5	0	0	20.0	7.5	7.9	0	0
1.0 mg/l	20.7	86	27	20.2	7-8	7.5	0	0	20.0	7.8	2.7	()	0
2.0 mg/l	20.7	8.7	7.7	20.2	7.5	7.4	0	U	20.1	8.0	7.6	()	1)
4.0 mg/l	20.7	8.7	7.8	20.2	7.3	7.3	0	0	201	7.8	7.6	U	0
8.0 mg/l	20.7	8.7	7.8	20.1	5.9	1.2	10	10	(потанудана	SERVICE CO. C.	**************************************	bradding	

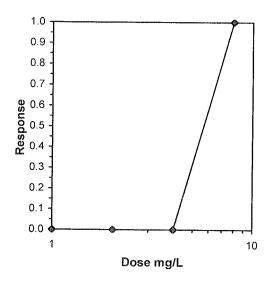
	F	RENEWA	\ L			72 Hr					96 Hr		
Date/Time:	2-5	09	1330	2-	6-09		130	ンひ	2-7	-09		140	υ
Analyst:		~~	incol®		4	L.					Q		
	∥ _{°C}	DO	pН	°C	DO	рН	# I	Dead	°C	DO		# D	ead
			r		DÇ	PII	A	В		DO	pН	A	В
Control	20.8	8.8	2.7	20.1	6.6	7.5	0	0	19.6	6.0	7.4	U	0
1.0 mg/l	20.8	8.8	2.2	20.2	6.9	7.5		0	19.5	6.2	7.4	()	0
2.0 mg/l	20.8	8.8	7.8	20.1	6.7	7.5	0	0	19.5	6.1	2.3	0	0
4.0 mg/l	20.8	8.9	7.8	20.2	6.9	7.5	0	O	19.5	6.3	7.3	0	0
8.0 mg/l			· · · · · · · · · · · · · · · · · · ·	/flakenessess		- LOUVENING	hometer #**		-	Name of the least	*Hanasasson	Magnicality	

Comments: Control: Alkalinity: 70 mg/l; Hardness: 92 mg/l; Conductivity: 3/2 umho. SDS: Alkalinity: 7/ mg/l; Hardness: 93 mg/l; Conductivity: 3/8 umho.

Concentration-response relationship acceptable? (see attached computer analysis):

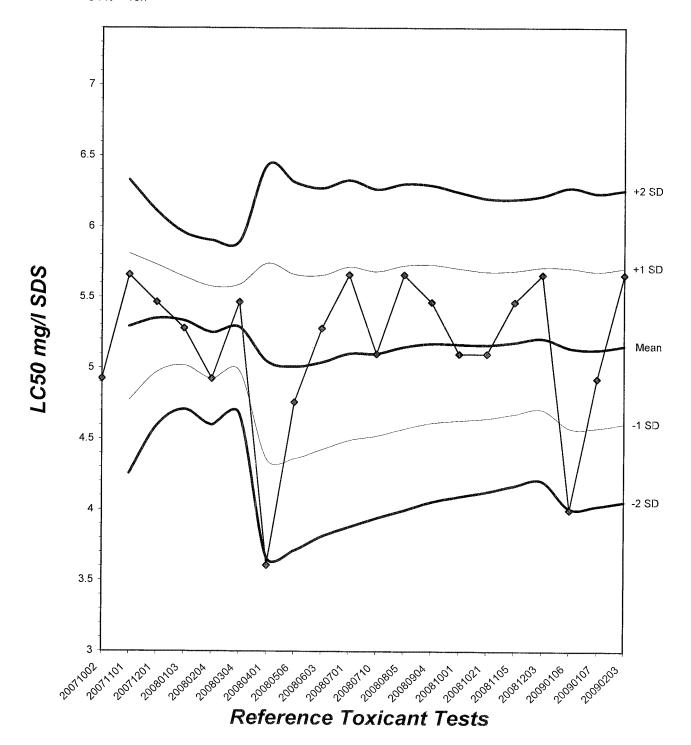
Yes/(response curve normal)

No (dose interrupted indicated or non-normal)


				Acute Fish Test-96	Hr Survival	
	2/3/2009 2/7/2009 2/3/2009		Lab ID:	RT-090203 CAATL-Aquatic Testing Labs ACUTE-EPA-821-R-02-012		REF-Ref Toxicant SDS-Sodium dodecyl sulfate PP-Pimephales promelas
Conc-mg/L	1	2				
D-Control	1.0000	1.0000	***************************************	All the second s	(4)	
1	1.0000	1.0000				
2	1.0000	1.0000				
4	1.0000	1.0000				
8	0.0000	0.0000				

			Tra	ansform:	Arcsin Sc	uare Root		Number	Total
Conc-mg/L	Mean	N-Mean	Mean	Min	Max	CV%	N	Resp	Number
D-Control	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	0	20
1	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	0	20
2	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	0	20
4	1.0000	1.0000	1.4120	1.4120	1.4120	0.000	2	0	20
8	0.0000	0.0000	0.1588	0.1588	0.1588	0.000	2	20	20

Auxiliary Tests	Statistic	Critical	Skew	Kurt
Normality of the data set cannot be confirmed	Wycara			
Equality of variance cannot be confirmed				


		Graphical Me
Trim Level	EC50	
0.0%	5.6569	700 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4

5.6569

Fathead Minnow Acute Laboratory Control Chart

CV% = 10.7

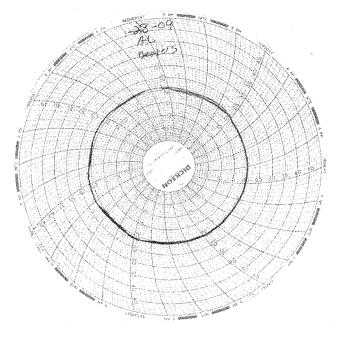
TEST ORGANISM LOG

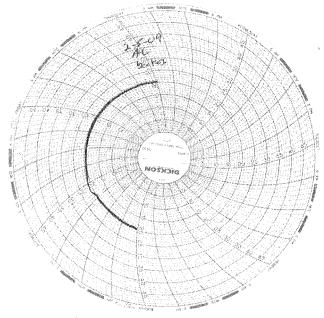
FATHEAD MINNOW - LARVAL (Pimephales promelas)

QA/QC BATCH NO.: RT-090203

SOURCE: In-Lab Culture

DATE HATCHED:		
APPROXIMATE QUANTITY: 400	<u>)</u>	
GENERAL APPEARANCE:	1	
# MORTALITIES 48 HOURS PRIOR TO USE IN TESTING:		
DATE USED IN LAB: 2/3/	09	
AVERAGE FISH WEIGHT:	gm	
LOADING LIMITS: 0.65 gm/liter @ 20	0°С, 0.40 gm/liter @ 25°	PC
Approximately 1000 fish per 10 li 20°C for fish with a mean weight	iters limit if held overni of 0.006 gm.	ght for acclimation without filtration @
Approximately 650 fish per 10 lit 25°C for fish with a mean weight	ers limit if held overnig	ht for acclimation without filtration @
200 ml test solution volume = 0.250 ml test solution volume = 0.	013 gm mean fish weigh 016 gm mean fish weigh	at limit @ 20°C; 0.008 @ 25°C at limit @ 20°C; 0.010 @ 25°C
ACCLIMATION WATER QUALITY:		
Temp.: <u>70.7</u> °C	pH: A	ammonia: <u>CO/</u> mg/l NH ₃ -N
DO: S-6 mg/l	Alkalinity: 70 mg/l	Hardness: 92 mg/l
READINGS RECORDED BY:	Jn	DATE: 2-7-09




Test Temperature Chart

Test No: RT-090203

Date Tested: 02/03/09 to 02/07/09

Acceptable Range: 20+/- 1°C

Ceriodaphnia dubia Chronic Toxicity Test Reference Toxicant Data

CERIODAPHNIA CHRONIC BIOASSAY

EPA METHOD 1002.0 REFERENCE TOXICANT - NaCl

QA/QC Batch No.: RT-090203 Date Tested: 02/03/09 to 02/10/09

TEST SUMMARY

Test type: Daily static-renewal. Species: *Ceriodaphnia dubia*.

Age: <24 hrs; all released within 8 hrs.

Test vessel size: 30 ml.

Number of test organisms per vessel: 1.

Temperature: 25 +/- 1°C.

Dilution water: Mod. hard reconstituted (MHRW).

Reference Toxicant: Sodium chloride (NaCl).

Endpoints: Survival and Reproduction.

Source: In-laboratory culture. Food: .1 ml YTC, algae per day. Test solution volume: 20 ml.

Number of replicates: 10.

Photoperiod: 16/8 hrs. light/dark cycle.

Test duration: 7 days.

Statistics: ToxCalc computer program.

RESULTS SUMMARY

Sample Concentration	Percent Survi	ival	Mean Numb Young Per F		
Control	100%		24.1		
0.25 g/l	100%		25.5		
0.5 g/l	100%		23.5		
1.0 g/l	100%		16.4	*	
2.0 g/l	90%		3.5	*	
4.0 g/l	0%	*	0	**	

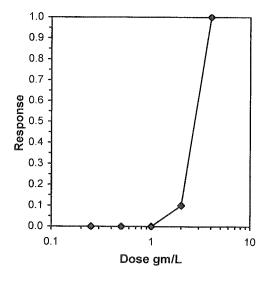
^{*} Statistically significantly less than control at P = 0.05 level

CHRONIC TOXICITY

Survival LC50	2.6 g/l
Reproduction IC25	0.85 g/l

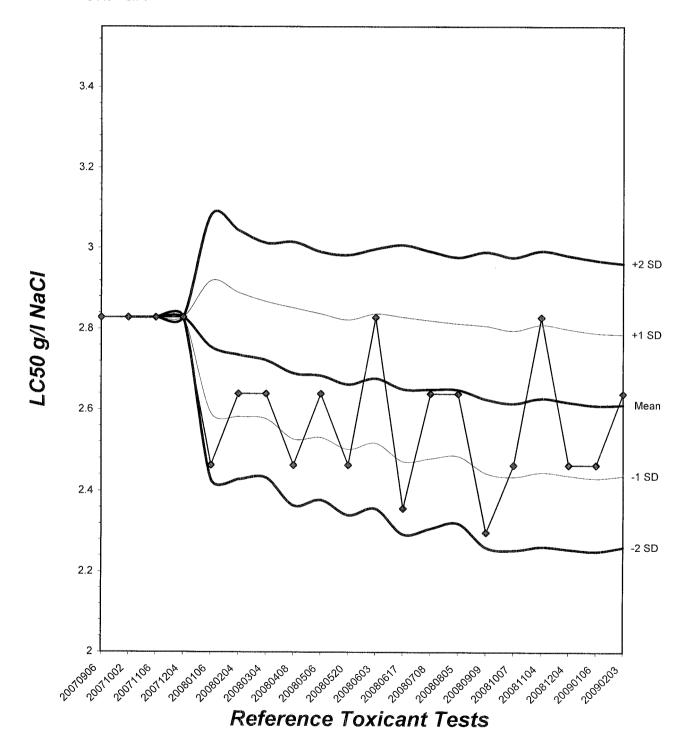
QA/QC TEST ACCEPTABILITY

Parameter	Result					
Control survival ≥80%	Pass (100% Survival)					
≥15 young per surviving control female	Pass (24.1 young)					
≥60% surviving controls had 3 broods	Pass (90% with 3 broods)					
PMSD <47% for reproduction	Pass (PMSD = 9.6%)					
Stat. sig. diff. conc. relative difference > 13%	Pass (Stat. sig. diff. conc. relative difference = 31.9%)					
Concentration response relationship acceptable	Pass (Response curve normal)					


^{**} Reproduction data from concentrations greater than survival NOEC are excluded from statistical analysis.

			Cerioda	aphnia Sui	rvival and	Reprodu	ction Tes	t-7 Day S	Survival	
Start Date:	2/3/2009 1	6:00		RT-09020			Sample ID		REF-Ref 1	oxicant
End Date:	2/10/2009	15:30	Lab ID:	CAATL-Ac	quatic Tes	ting Labs	Sample Ty	/pe:	NACL-Soc	dium chloride
Sample Date:	2/3/2009		Protocol:	FWCH 4T	H-EPA-82	1-R-02-0	Test Spec	ies:	CD-Cerioo	laphnia dubia
Comments:										•
Conc-gm/L	1	2	3	4	5	6	7	8	9	10
D-Control	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
0.25	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
0.5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
2	1.0000	0.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
4	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

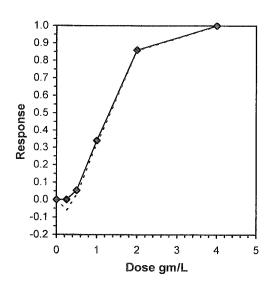
				Not			Fisher's	1-Tailed	Number	Total
Conc-gm/L	Mean	N-Mean	Resp	Resp	Total	N	Exact P	Critical	Resp	Number
D-Control	1.0000	1.0000	0	10	10	10			0	10
0.25	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
0.5	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
1	1.0000	1.0000	0	10	10	10	1.0000	0.0500	0	10
2	0.9000	0.9000	1	9	10	10	0.5000	0.0500	1	10
4	0.0000	0.0000	10	0	10	10			10	10


Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	The state of the s
Fisher's Exact Test	2	4	2.82843	And the second s	\$\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Treatments vs D-Control					
			Trimmed	pearman-Karber	

				7
Trim Level	EC50	95%	CL	
0.0%	2.6390	2.3138	3.0099	THE STATE OF THE S
5.0%	2.6984	2.2899	3.1798	
10.0%	2.7216	2.5094	2.9517	
20.0%	2.7216	2.5094	2.9517	
Auto-0.0%	2.6390	2.3138	3.0099	

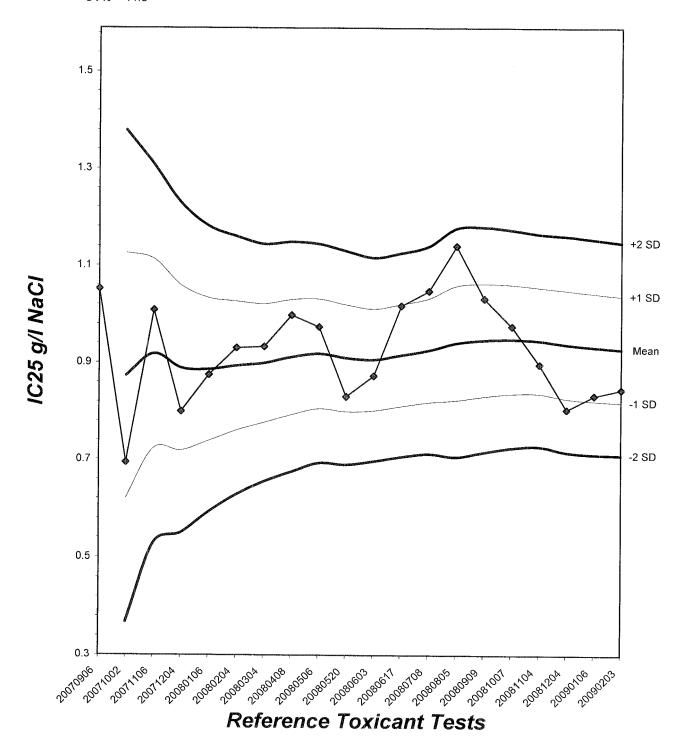
Ceriodaphnia Chronic Survival Laboratory Control Chart

CV% = 6.71



		THE PERSON NAMED IN COLUMN TWO	Ceriod	aphnia Su	rvival and	l Reprodu	iction Tes	st-Repro	duction	
Start Date:	2/3/2009 1	6:00	Test ID:	RT-09020	3c		Sample ID);	REF-Ref	oxicant
End Date:	2/10/2009	15:30	Lab ID:	CAATL-Ac	quatic Tes	ting Labs	Sample Ty	ype:	NACL-Soc	lium chloride
Sample Date:	2/3/2009		Protocol:	FWCH 4T	H-EPA-82	1-R-02-0	Test Spec	ies:	CD-Cerioo	laphnia dubia
Comments:										
Conc-gm/L	1	2	3	4	5	6	7	8	9	10
D-Control	25.000	19.000	26.000	25.000	24.000	25.000	24.000	25.000	22.000	26.000
0.25	20.000	26.000	29.000	30.000	26.000	25.000	26.000	24.000	25.000	24.000
0.5	26.000	18.000	20.000	22.000	23.000	25.000	27.000	24.000	30.000	20.000
1	10.000	9.000	20.000	21.000	23.000	20.000	10.000	22.000	19.000	10.000
2	2.000	2.000	4.000	2.000	5.000	5.000	2.000	6.000	5.000	2.000
4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

		_	,	Transform: Untransformed					1-Tailed	Isoto	onic
Conc-gm/L	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical	Mean	N-Mean
D-Control	24.100	1.0000	24.100	19.000	26.000	8.846	10	, , , , , , , , , , , , , , , , , , ,	<u> </u>	24.800	1.0000
0.25	25.500	1.0581	25.500	20.000	30.000	10.819	10	121.00	76.00	24.800	1.0000
0.5	23.500	0.9751	23.500	18.000	30.000	15.571	10	98.50	76.00	23.500	0.9476
*1	16.400	0.6805	16.400	9.000	23.000	35.578	10	62.00	76.00	16.400	0.6613
*2	3.500	0.1452	3.500	2.000	6.000	47.140	10	55.00	76.00	3.500	0.1411
4	0.000	0.0000	0.000	0.000	0.000	0.000	10			0.000	0.0000


Auxiliary Tests			Statistic	Critical	Skew	Kurt		
Shapiro-Wilk's Test indicates nor	iro-Wilk's Test indicates normal distribution (p > 0.05)					0.947	-0.3265	-0.1582
Bartlett's Test indicates unequal variances (p = 2.14E-03)					16.7726	13.2767		
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU				
Steel's Many-One Rank Test	0.5	1	0.70711	***************************************				
Treatments vs D-Control								
		Line	ar Interpol	ation (200 Resamples		· · · · · · · · · · · · · · · · · · ·	

			Linear Interpo					
Point	gm/L	SD	95% CL		Skew			
IC05	0.4885	0.0860	0.3398	0.6005	-0.0581	•		
IC10	0.5831	0.0780	0.4322	0.7065	0.2232			
IC15	0.6704	0.0835	0.5271	0.8274	0.7408			
IC20	0.7577	0.0888	0.6245	0.9501	0.7504			
IC25	0.8451	0.0959	0.7133	1.0505	0.6224			
IC40	1.1178	0.1068	0.9221	1.2861	-0.1220			
IC50	1.3101	0.0961	1.0946	1.4453	-0.6206			

Ceriodaphnia Chronic Reproduction Laboratory Control Chart

CV% = 11.8

CERIODAPHNIA DUBIA CHRONIC BIOASSAY

Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet

QA/QC No.: RT-090203

Start Date: 02/03/2009

6 1	Day			Nu	mbei	r of Y	Total	No.	Analyst					
Sample		A	В	C	D	E	F	G	Н	I	J	Live Young	Live Adults	Initials
	. 1	0	0	0	1)	0	0	0	0	0	0	0	10	2
	2	0	0	0	0	0	0	0	0	0	0	0	10	2
	3	3	0	0	5	4	4	3	4	3	4	30	10	n
Control	4	8	3	4	2	6	フ	0	6	0	2	48	10	1
Control	5	0	0	10	+5%	10	j4	7	0	6	0	37	10	
	6	7	16	0	13	0	0	0	0	0	15	58	10	1/
	7	(3)	0	12	0	14	(Z)	14	1.S	13	0	68	10	1//
	Total	25	19	26	25	24	25	24	75	22	26	241	10	1/7
	1	0	0	0	0	0	0	0	0	0	0	0	10	12
	2	0	0	Ü	0	0	0	0	0	Ü	0	0	10	R
	3	3	0	0	0	5	0	4	3	0	0	15	10	R
0.25 ~/1	4	2	Ч	3	4	0	3	0	7	4	3	35	10	m
0.25 g/l	5	Ö	X)8		10	7	12	7	4	7	6	82	10	M
	6	0	0	15	16	0	0	0	J	O	0	31	10	10
	7	10	14	0	0	14	10	15	(2)	14	15	92	10	
	Total	20	26	29	30	26	25	26	24	2-5	24	255	10	
	1	0	0	0	()	()	0	0	/)	0	0	$\hat{\mathcal{O}}$	10	R
	2	0	0	0	0	0	0	17	0	0	0	O	10	R
	3	0	0	0	0	4	4	0	4	3	0	15	10	R
0.5 g/l	4	5	6	5	4	O	0	4	0	0	3	27	10	M
	5	2	0	0	8	6	う	G	6	11	フ	61	10	1/2
	6	0	0	0	0	0	14	Ò	0	16	10	40	10	a
	7	14	12	15	10	13	0	14	H	0	0	92	10	1/2
	Total	26	18	20	22	23	95	27	24	30	20	235	10	Ja

Circled fourth brood not used in statistical analysis.

^{7&}lt;sup>th</sup> day only used if <60% of the surviving control females have produced their third brood.

CERIODAPHNIA DUBIA CHRONIC BIOASSAY

Reference Toxicant - NaCl Reproduction and Survival Raw Data Sheet

QA/QC No.: RT-090203

Start Date: 02/03/2009

				Nı	ımbe	r of Y	Total	No.	Analyst					
Sample	Day	A	В	С	D	E	F	G	н	I	J	Live Young	Live Adults	Initials
	1	U	0	0	0	0	0	0	()	0	0	0	10	2
	2	0	0	0	0	0	0	<u> </u>	0	0	0	0	10	Ru
	3	0	0	0	0	0	0	0	0	0	0	0	10	Ro
1.0 g/l	4	4	3	4	3	2	4	3	2	3	4	32	10	h
1.0 g/1	5	O	0	W	11	10	7	0	11	8	Ó	53	10	11/2
	6	6	0	0	0) [0	7	0	0	6	30	10	
	7	0	6	10	ラ	0	9	0	9	8	0	49	10	
	Total	10	9	20	21	23	20	10	22	196	10	(64	10	1/
	1	0	\mathcal{O}	_0	0	0	0	0	0	0	0	0	10	
	2	0	0	0	0	0	0	0	0	0	0	0	10	2
	3	0	0	0	0	0	0	0	0	0		0	10	RA-
2.0 ~ /1	4	2	0	U	0	0	0	0	Z	3	0	7	10	1/1
2.0 g/l	5	0	2	2	0	3	2	2	0	0	Ò	U	10	
	6	0	0	0	2	. 0	0	0	4	2	0	G	10	
	7	0	X	2	0	Z	3	Ö	0	0	2_	, 0(5	15	4
	Total	2	2	4	2	5	5	2	6	4	2_	3 6	9	WL
	1	X	>	_	>	×	_<_	$\overline{}$	X	X	\times	0	0	12
	2	Caracana.		specification -	.,		Michael Street, Control of the Contr	-	4-20	·		The state of the s	-parentmeterson	R
	3	John Berger	Crossinstano		***************************************	Q	(·		-	Wildows	**Geoglassanananananananananananananananananan	***************************************	*** The state of t
40 /1	4	804	4	-700-attaces	4	<u> </u>	***************************************	Q/1000	AND	Para Santa	- Marine	**************************************	granden and a second	, The state of the
4.0 g/l	5		3 333		^		Name		47	W-Companie.		-pt/06/PARMITMAN,		. ALEXANDER PARTICIPATION OF THE TAXABLE PARTICIPATION OF TAXABLE PARTICI
	6	-minimum,	_			- marine	190000	Champroine.			***	######################################	2 Samuel (SASA)	Parameter State of the State of
	7	_	CHARDAN	- Thereses		4	Chimine von u	APPROXIMATE	A CONTRACTOR OF THE PARTY OF TH	graphic productions of the second	Wagningson.		,	
	Total	0	0	\mathcal{O}	0	0	0	\sim	<u></u>	\bigcirc	<u></u>	0	0	2

Circled fourth brood not used in statistical analysis. 7^{th} day only used if <60% of the surviving control females have produced their third brood.

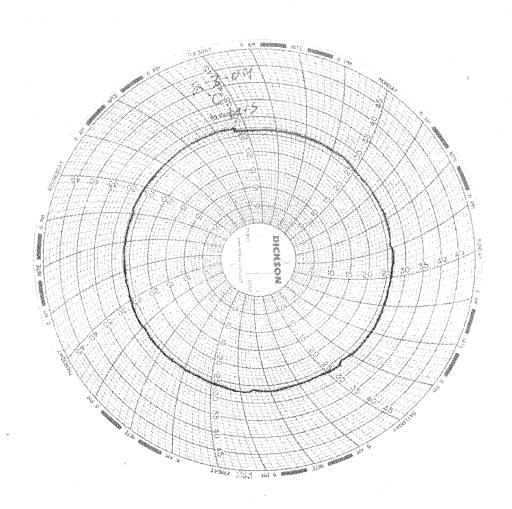
CERIODAPHNIA DUBIA CHRONIC BIOASSAY

Reference Toxicant - NaCl Water Chemistries Raw Data Sheet

QA/QC No.: RT-090203

Start Date:02/03/2009

		DA	DAY 1		DAY 2		DAY 3		DAY 4		Y 5	DAY 6		DAY 7	
		Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final
Analyst I	nitials:	£~	Rm	Par	2.	R	R	R	200	2	h	1	9-	2	6
Time of R	eadings:	1600	15W	1500	1500	ISW	KW	isan	1200	1700	1500	154)	1530	1530	1530
	DO	8.3	8.8	8.8	9.2	8.4	8.8	8.5	8.7	8.4	8.1	8.3	8.5	8-5	8.4
Control	pН	7.8	8.1	8.2	8.0	2.7	7.8	2.7	2.8	7.7	7.7	22	7.8	7.7	20
	Temp	25.0	24.1	24.2	24.0	25.5	24.1	25.5	24.0	25.0	241	247	246	250	24.1
	DO	84	8.7	8.8	9.1	8.4	8.7	8.5	8.6	824	83	84	5.2	8-5	8-3
0.25 g/l	рН	7.8	8.1	8.2	8:0	7.7	7.8	2.7	2.8	7.7	7.7	7-8	7-8	27	7.8
	Temp	25.0	24.2	24.2	24.1	25.5	24.3	25.5	24.2	25.0	243	24.8	24.2	24.8	24.4
	DO	8.4	8.7	8.7	9.1	8.5	8.7	8.4	8.6	8.3	82	8.3	8-3	8.4	8-2
0.5 g/l	рН	7-8	8,2	8.2	8.0	2.8	2.8	7.7	7.9	7.8	アウ	28	7-8	77	2.7
	Temp	25:0	240	24.2	24.0	25.5	24.1	25.4	240	25.0	245	249	244	24.7	242
	DO	8.4	8,8	8.7	9.0	8,5	8.8	8.4	8-7	8.3	8.1	8.4	8.4	8.2	8-3
1.0 g/l	рН	2.8	8.2	8.2	8.1	2.8	2.8	7-8	29	7.8	2.8	7.9	7-8	7.7	2.7
	Temp	25.0	24.0	24.1	24.3	25.4	242	25-3	24.1	25.0	24.3	249	243	246	24.(
: : :	DO	8.4	8.9	8.7	9.1	8,5	8.9	8,3	8.9	8.3	8.2	8.5	8.2	8.3	8.4
2.0 g/l	рН	7.9	8.2	8.2	8.1	2.8	2.9	7-8	7.9	7.8	7.8	78	7-8	28	7-2
	Temp	24.9	24.3	24.0	24.0	25.3	24.2	25.1	24.2	25.0	244	250	24.4	24.3	24-6
	DO	8.5	9.0	Section	Marie .	1000mm	el almontes processor.	uggers.	· particular v.		-12E00EV	estande	igar-ress.		~~ ₁
4.0 g/l	рН	29	8.2	Allenge .	· ·	Manus Manus Constitution of the American	SERVICE .	***************************************	,american	Alexander and the second	NAMES OF THE OWNER.	galline.	emine.	Nancas	Marin State of the
			24.2		Outenser	nappopus-	gastrice.	, and a second s	MEANO. /	44	pron.	- Company		and,	, gad Konalisiye
	Di	ssolved	Oxyge	n (DO)	reading	s are in		O ₂ ; Tem _j	perature	(Temp)	readin	gs are ii	1 °C.		
Additional Parameters			F	C			rol			H		Iigh Concentrati		ion	
				Day		Day 3		Day 5	,	Day 1		Day 3		Day 5	
Conductivity (μS) Alkalinity (mg/l CaCO ₃)				312		300		305	- 6	6420		3350			
Hardness (mg/l CaCO ₃)				70 92		<u>60</u>		60		71		64		3	
	Hardness (mg/I CaCO ₃) 92 93 92 93 93 93 Source of Neonates														
Rep	licate:		A	В	С		D	Е	F		G		Н		J
Broo	od ID:		41	B2	C:)2	E3	F2		-	H3	III		J2
NPDES - 2763															



Test Temperature Chart

Test No: RT-090203

Date Tested: 02/03/09 to 02/10/09

Acceptable Range: 25+/- 1°C

ANALYTICAL REPORT

MWH-Pasadena / Boeing

Lot D9B190134

Project ISB1802

Joseph Doak 17461 Derian Avenue Suite 100 Irvine, CA 92614

TestAmerica Laboratories, Inc.

Am Paudona For;
DiLea Griego
Project Manager

February 25, 2009

Table of Contents

Standard Deliverables with Supporting Documentation

Report Contents	Number of Pages
Standard Deliverables	
(The Cover Letter and the Report Cover page are considered integral parts of this Standard Deliverable package. This report is incomplete unless all pages indicated in this Table of Contents are included.)	
• Table of Contents	
 Case Narrative 	
 Executive Summary – Detection Highlights 	
Methods Summary	
Method/Analyst Summary	
• Lot Sample Summary	
QC Data Association Summary	
Analytical Results	
Sample Receiving Checklist	
• Chain-of-Custody	
·	Check below when
Supporting Documentation	supporting
Note: A one-page "Description of Supporting Documentation" is	documentation is
provided at the beginning of this section.).	present.
• Volatile GC/MS	
Semivolatile GC/MS	
• Volatile GC	
• Semivolatile GC	
2000	
• LC/MS or HPLC	
• Metals	X
Commel Classica	
General Chemistry	
Subcontracted Data	

Quality Control Definitions of Qualifiers

Qualifier	Definition
U	Result is less than the method detection limit (MDL).
В	Organics: Method blank contamination. The associated method blank contains the target analyte at a reportable level. Inorganics: Estimated result. Result is less than the RL
J	Organics: Estimated result. Result is less than RL Inorganics: Method blank contamination. The associated method blank contains the target analyte at a reportable level.
E	Estimated result. Result concentrations exceed the calibration range.
p	Relative Percent Difference (RPD) is outside control limits.
*	Surrogate or Relative Percent Difference (RPD) is outside control limits.
DIL	The concentration is estimated or not reported due to dilution.
COL	More than 40% difference between the primary and confirmation detector results. The lower of the two results is reported.
СНІ	More than 40% difference between the primary and confirmation detector results. The higher of the two results is reported.
L	Serial dilution of a digestate in the analytical batch indicates that physical and chemical interferences are present.
а	Spiked analyte recovery is outside stated control limits.
N	Spiked analyte recovery is outside stated control limits.
NC	The recovery and/or RPD were not calculated.
MSB	The recovery and/or RPD were not calculated because the sample amount was greater than four times the spike amount.

Case Narrative

Enclosed is the report for one sample received at TestAmerica Laboratories, Inc. – Denver laboratory on February 18, 2009. The results included in this report relate only to the samples in this report and have been reviewed for compliance with the laboratory QA/QC plan and meet all requirements of NELAC. All data have been found to be compliant with laboratory protocol, with the exception of any items noted below.

This report may include reporting limits (RLs) less than the Denver laboratory's standard reporting limits. The reported sample results and associated reporting limits are being used specifically to meet the needs of this project. Note that data are not normally reported to these levels without qualification because they are inherently less reliable and potentially less defensible than required by the latest industry standards.

Dilution factors and footnotes have been provided to assist in the interpretation of the results. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at concentrations above the linear calibration curve, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

TestAmerica Laboratories, Inc. utilizes USEPA approved methods in all analytical work. The samples presented in this report were analyzed for the parameters listed on the analytical methods summary page in accordance with the methods indicated. A summary of quality control parameters is provided below.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Quality Control Summary for Lot D9B190134

Sample Receiving

The cooler temperature upon receipt at the laboratory was acceptable at 2.6°C.

Total Mercury - Method 245.1

MS/MSD (Matrix Spike/Matrix Spike Duplicate) analyses were performed on a sample from another client and/or lot. The MS/MSD for method 245.1 exhibited spike compound recoveries below the QC limits for Mercury. The acceptable LCS (Laboratory Control Sample) analysis data indicated that the analytical system was operating within control; therefore, corrective action is deemed unnecessary.

No anomalies were observed.

Dissolved Mercury – Method 245.1

No anomalies were observed.

EXECUTIVE SUMMARY - Detection Highlights

D9B190134

PARAMETER RESULT REPORTING ANALYTICAL UNITS METHOD

NO DETECTABLE PARAMETERS

METHODS SUMMARY

D9B190134

PARAMETER	ANALYTICAL METHOD	PREPARATION METHOD
Dissolved Mercury (CVAA)	MCAWW 245.1	MCAWW 245.1
Mercury (Manual Cold Vapor Technique)	MCAWW 245.1	MCAWW 245.1

References:

MCAWW

"Methods for Chemical Analysis of Water and Wastes", EPA-600/4-79-020, March 1983 and subsequent revisions.

METHOD / ANALYST SUMMARY

D9B190134

ANALYTICA METHOD	L	ANALYST	ANALYST ID	
MCAWW 245	.1	Christopher Grisdale	9582	
Reference	s:			
MCAWW		l Analysis of Water and Wastes", rch 1983 and subsequent revisions.		

SAMPLE SUMMARY

D9B190134

 WO #
 SAMPLE#
 CLIENT SAMPLE ID
 SAMPLED DATE
 SAMPLED TIME

 K7EKN 001
 ISB1802-01
 02/16/09
 14:30

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

QC DATA ASSOCIATION SUMMARY

D9B190134

Sample Preparation and Analysis Control Numbers

SAMPLE#	MATRIX	ANALYTICAL METHOD	LEACH BATCH #	PREP BATCH #	MS RUN#
001	WATER WATER	MCAWW 245.1 MCAWW 245.1		905017 4 9050182	9050101 9050105

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

Total Metals

CLP-Like Forms

Lot 1D
Client: <u>TestAmerica-Irvine</u>
Method: 245.1
Associated Samples:001
Batch: 9050174

Lot ID: D0D100134

		rganic anai	LYSIS DATA PACKAGE	
Contract:]	TestAmerica Irvine		SDG No.:	D9B190134
Lab Code: Case No.:			SAS No.:	
SOW No.:				
The second secon	Sample ID.	Lal	o Sample No.	
	ISB1802-01	<u>D9</u> :	B190134-001	
Were ICP inte	erelement corrections applied?		Yes/No	YES
Were ICP back	ground corrections applied?		Yes/No	YES
	were raw data generated before ation of background corrections?		Yes/No	NO
	·			
Comments:				
	·			
	t this data package is in compliant the technically and for completeness			
above. Relea	se of the data contained in this he floppy diskette has been authorize	nardcopy dat	a package and in the compute	r-readable data
	the following signature.	su by the ha	boracory manager or one mana	ger b debrynee, de
Signature:	Donamine Dine	Name:	Yongming Ding	
	Yongming Ding 2/24/2009			
Date:	2/24/2009	Title:	Analyst V	

COVER PAGE - IN

TestAmerica Irvine

Total Metals Analysis Data Sheet

Lab Name:

TESTAMERICA DENVER

Client Sample ID:

ISB1802-01

Lot/SDG Number:

D9B190134

Lab Sample ID:

D9B190134-001

Matrix:

Unit:

WATER

Lab WorkOrder:

% Moisture:

N/A

K7EKN

Basis:

Wet

Date/Time Collected: Date/Time Received:

02/16/09 14:30 02/18/09 10:15

Analysis Method:

245.1

Date Leached:

QC Batch ID:

ug/L 9050174 Date/Time Extracted: Date/Time Analyzed:

02/19/09 13:30 02/19/09 18:04

Sample Aliquot:

<u>10 mL</u>

Instrument ID:

<u>023</u>

Dilution Factor:

1

CAS No.	Analyte	Conc.	MDL	RL	Q
7439-97-6	Mercury	0.027	0.027	0.20	

-2A-

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Contract:	TestAmerica Irvin	<u>e</u>			
Lab Code:	Case	No.:	SAS No.:	SDG NO.:	D9B190134
Initial Cal	libration Source:	Inorganic Ventu	ires		
Continuing	Calibration Source:	Ultra Scie	entific		
		Concentration Un	nits: ug/L		
	Initial	Calibration	Continuing	Calibration	

	Initial Calibration			Continu					
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	м
Mercury	7.000	7.087	101.2	5.000	4.879	97.6	4.931	98.6	cv

(1) Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

Analyte

Mercury

True

Found

Total Metals

-2A-

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Contract:	TestAmerica Irvin	e				
Lab Code:	Case	No.:	SAS No.:	SDG NO	D9B190134	
Initial Ca	libration Source:	Inorganic Ve	ntures	THE STATE OF THE S		
Continuing	Calibration Source:	Ultra S	cientific			
		Concentration	Units: ug/L			
	Initial	Calibration	Cont	inuing Calibration		

True

5.000

%R(1)

98.5

Found

4.924

Found

4.963

%R(1)

99.3 CV

%R(1)

⁽¹⁾ Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

Total Metals -2BCRDL STANDARD FOR AA AND ICP

Contract:	TestAmerica I	rvine					
Lab Code:		Case No.:		SAS No.:	*******	SDG No.:	D9B190134
AA CRDL Sta	ndard Source:	Ultra	Scientific		4.414		
ICP CRDL St	andard Source:						

Concentration Units: ug/L

CRDL Standard for AA				In	CRDL Stand	ard for	d for ICP Final	
Analyte	True	Found	%R	True	Found	%R	Found	%R
Mercury	0.200	0.19300	96.5	W-1-1			1	

 ${\tt Comments}:$

TestAmerica Irvine

Total Metals Analysis Data Sheet

Lab Name:

TESTAMERICA DENVER

Client Sample ID:

Lot/SDG Number:

D9B190134

Lab Sample ID:

D9B190000-174B

Matrix:

Basis:

WATER

Lab WorkOrder:

<u>K7EN8</u>

% Moisture:

Wet

Date/Time Collected: Date/Time Received:

Analysis Method:

<u>245.1</u>

Date Leached:

Unit:

ug/L

Date/Time Extracted:

02/19/09 13:30

QC Batch ID:

9050174

Date/Time Analyzed:

02/19/09 17:16

Sample Aliquot:

<u>10 mL</u>

Instrument ID:

<u>023</u>

4	1
actor:	7

7470.077	CAS No.	Analyte	Conc.	MDL	RL	Q
77.55 V 0.027 0.027 0.20 C	7439-97-6	Mercury	0.027	0.027	0.20	U

-3-

BLANKS

Contract:	TestAmerica Irvine				
Lab Code:	Case No.:	SAS No.:		SDG NO.:	D9B190134
Preparation	Blank Matrix (soil/water):	WATER			
Preparation	Blank Concentration Units (ug/L	or mg/kg):	UG/L		

	Initial Calib. Blank				inuing Blank (Calibrat ug/L)	ion		Preparation Blank		
Analyte	(ug/L)	С	1	С	2	С	3	С		С	М
Mercury	0.02	27 U	0.02	27 ប	0.0	27 U	0.02	27 U	0.027	ן ט	CV

Comments:

-3-

BLANKS

Contract:	TestAmerica	Irvine				
Lab Code:		Case No.:	SAS No.:	·	SDG NO.:	D9B190134
Preparation	Blank Matrix	(soil/water):	WATER			
Preparation	Blank Concen	tration Units (ug/	L or mg/kg):	UG/L		

	Initial Calib. Blank				inuing Blank (Calibrat ug/L)	ion		Preparation Blank		
Analyte	(ug/L)	С	1	С	2	С	3	С		С	М
Mercury			0.02	27 U							CV

Comments:

TestAmerica Irvine **Total Metals Analysis Data Sheet**

Lab Name:

TESTAMERICA DENVER

Client Sample ID:

LAB MS/MSD

Lot/SDG Number:

D9B190134

MS Lab Sample ID:

D9B190119-001S

Matrix:

WATER

MS Lab WorkOrder:

K7EHT

% Moisture:

N/A

02/16/09 09:30

Basis:

Wet

Date/Time Collected: Date/Time Received:

02/18/09 10:15

Analysis Method:

245.1

Date Leached:

Unit: QC Batch ID:

ug/L

Date/Time Extracted:

02/19/09 13:30 02/19/09 17:23

MS Sample Aliquot:

9050174 10 mL

1

Date/Time Analyzed: **Instrument ID:**

<u>023</u>

MS Dilution Factor:

Analyte	Spike Amount	Sample Result	С	MS Result	C	% Rec	Q	QC Limit	
Mercury	5.00	0.032	Ī	4 29		85	N	90 - 110	1

TestAmerica Irvine Total Metals Analysis Data Sheet

Lab Name:

TESTAMERICA DENVER

Client Sample ID:

LAB MS/MSD

Lot/SDG Number:

D9B190134

MSD Lab Sample ID:

D9B190119-001D

Matrix:

WATER

MSD Lab WorkOrder:

K7EHT

% Moisture:

N/A

02/16/09 09:30

Basis:

Wet

Date/Time Collected: Date/Time Received:

02/18/09 10:15

Analysis Method:

<u>245.1</u>

Date Leached:

Unit: QC Batch ID: ug/L

Date/Time Extracted:

02/19/09 13:30

MSD Sample Aliquot:

9050174 <u>10 mL</u>

Date/Time Analyzed: Instrument ID:

02/19/09 17:25 <u>023</u>

MSD Dilution Factor:

1	Amount	Sample	Sample Result C	MSD Result	С	% Rec	Q	RPD	Q	QC Limits	
Analyte		- 1								% Rec	RPD
Mercury	5.00	0.032	J	4.29		85	N	0.0		90 - 110	10

TestAmerica Irvine Total Metals Analysis Data Sheet

Lab Name:

TESTAMERICA DENVER

Client Sample ID:

Lot/SDG Number:

D9B190134

Lab Sample ID:

D9B190000-174C

Matrix:

WATER

Lab WorkOrder:

<u>K7EN8</u>

% Moisture:

N/A

Date/Time Collected:

Basis:

Unit:

<u>Wet</u>

Date/Time Received:

Analysis Method:

<u>245.1</u> ug/L

Date Leached:

02/19/09 13:30

QC Batch ID:

9050174

Date/Time Extracted: Date/Time Analyzed:

02/19/09 17:18

Sample Aliquot:

<u>10 mL</u>

Instrument ID:

<u>023</u>

Dilution Factor:

Analyte	True	Found	%Rec	Q	Limits
Mercury	5.00	4.78	96		90 - 110

-10-

DETECTION LIMITS

Lab Code:		Case No.:	SAS No	. •	SDG NO.:	D9B190134
ICP ID Number	r:		Date:	12/26/2008		
Flame AA ID N	Number:	Cetac M7500 Hg				
Furnace AA II	Number:					

Analyte	Wave- length (nm)	Back- ground	PQL (ug/L)	MDL (ug/L)	м
Mercury	253.70		0.20	0.027	CV

Comments:	

-13-

PREPARATION LOG

Contract:	TestAmerica I	rvine	·			
Lab Code:		Case No.:		SAS No.:	 SDG NO.:	D9B190134
Method:	CV		Prep Method:		 <u></u>	

Sample ID	Preparation Date	Initial Volume	Final Volume(mL)
MB9050174	2/19/2009	10.0	10.0
Check Sample	2/19/2009	10.0	10.0
INTRA-LAB QC	2/19/2009	10.0	10.0
LAB MS	2/19/2009	10.0	10.0
LAB MSD	2/19/2009	10.0	10.0
ISB1802-01	2/19/2009	10.0	10.0

Comments:

ANALYSIS RUN LOG

Contract:	TestAmerica	a Irvine					
Lab Code:		Case No.:	SAS No.:		SDG No.:	D9B190134	
Instrument I	D Number:	Cetac M7500 Hg	Method:	CV			
Start Date:	2/19/2009		End Date:	2/19/2009			

Start Date: 2/19,	/2009							En	d I	Dat	e:			19	/20				_							
G 1 -	5/5													Ana	ıly	tes	;									
Sample ID.	D/F	Time	% R	A L	S B	A S	B A		CD		C R		ם	FE		M G		H G	K	S	A G	N A		V	Z N	
Cal Blank	1.00	15:48																х								Ī
Std1	1.00	15:50																х					`			Ī
Std2	1.00	15:52																X								Ī
Std3	1.00	15:54																X								Ī
Std4	1.00	15:57																X								Ī
Std5	1.00	15:59																Х								Ī
Std6	1.00	16:01																X								Ī
ICB	1.00	16:04																х								Ī
ICV	1.00	16:07																Х								Ī
RL	1.00	16:09		i														х								Ī
CCV	1.00	17:02																X								Ī
ССВ	1.00	17:04		İ														X								Ť
ZZZZZZ	1.00	17:07																								Ť
ZZZZZZ	1.00	17:09																								Ť
ZZZZZZ	1.00	17:11										İ														Ť
ZZZZZZ	1.00	17:14																								Ī
MB9050174	1.00	17:16																X								Ť
Check Sample	1.00	17:18																х								Ī
INTRA-LAB QC	1.00	17:21																Х								Ť
LAB MS	1.00	17:23																х								Ī
LAB MSD	1.00	17:25																Х								Ť
CCV	1.00	17:28		İ														Х								Ť
CCB	1.00	17:30		İ														х								İ
CCV	1.00	17:53		<u> </u>			<u> </u>											х								Ė
ССВ	1.00	17:55															İ	X								Ė
ZZZZZZ		17:57																								Ī
ZZZZZZ	1.00	18:00																								İ
ZZZZZZ		18:02																			İ	П				Ť
ISB1802-01		18:04																х								İ
ZZZZZZ		18:07															i									İ
ZZZZZZ		18:09																								Ė
ZZZZZZ	·	18:11																								İ
ZZZZZZ		18:14															H									Ϊ

^{* -} Denotes additional elements (other than the standard CLP elements) are represented on another Form 14

ANALYSIS RUN LOG

Contract: TestA	merica Irvi	ne						_																			
Lab Code:		Case	No.:					SA	S	No.	:	_					s	DG	No	o.:	D	9B	19	01:	34		_
Instrument ID Numb	er: Cetac	M7500	Hg				_	Μe	th	od:		(CV		_												
Start Date: 2/19	/2009							En	d I	Dat	e:		2/	19	/20	200	-										
														Ana	lу	te	3										
Sample ID.	D/F	Time	% R	A L	l	A S	B A	1	C D	1 1				F E			M N		ŀ	K	S E	A G		T L	1 -	1	C N
ZZZZZZ	1.00	18:16																									
CCV	1.00	18:18																х									
CCB	1.00	18:20																Х									

^{* -} Denotes additional elements (other than the standard CLP elements) are represented on another Form 14

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Dissolved Metals

CLP-Like Forms

Ect 18:
Client: <u>TestAmerica Irvine</u>
Method: <u>245.1</u>
Associated Samples: 001
Batch: 9050182

D9R190134

Lot ID:

Dissolved Metals

		GANIC ANAL	YSIS DATA PACKAGE		
Contract:	TestAmerica Irvine		sı	OG No.:	D9B190134
Lab Code:	Case No.:		SI	AS No.:	
SOW No.:					
	Sample ID.	Lak	Sample No.		
	ISB1802-01	<u>D91</u>	3190134-001		
i .					
Were ICP int	erelement corrections applied?			Yes/No	YES
	kground corrections applied?			Yes/No	YES
	-were raw data generated before ation of background corrections?			Yes/No	NO
					Grant Control of Contr
Comments:					
	at this data package is in compliand th technically and for completeness,				
	ase of the data contained in this ha floppy diskette has been authorized		= =	_	
verified by t	the following signature.				
	1 8				
Signature:	yong ming Ding 2/24/2009	Name:	Yongming Ding		
	7/2 1/2 0000				
Date:	2/24/2001	Title:	Analyst V		

TestAmerica Irvine

Dissolved Metals Analysis Data Sheet

Lab Name:

TESTAMERICA DENVER

Client Sample ID:

<u>ISB1802-01</u>

Lot/SDG Number:

D9B190134

Lab Sample ID:

D9B190134-001

Matrix:

WATER

Lab WorkOrder:

K7EKN

% Moisture:

N/A

02/16/09 14:30

Basis:

Unit:

Wet

Date/Time Collected: Date/Time Received:

02/18/09 10:15

Analysis Method:

<u>245.1</u>

Date Leached:

QC Batch ID:

ug/L 9050182 Date/Time Extracted: Date/Time Analyzed:

02/19/09 13:30 02/19/09 17:07

Sample Aliquot:

<u>10 mL</u>

Instrument ID:

<u>023</u>

Dilution Factor:

1

CAS Nò.	Analyte	Conc.	MDL	RL	Q
7439-97-6	Mercury	0.027	0.027	0.20	U

Mercury

Dissolved Metals

-2A-

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Contract:	TestAm	erica Irvin	ıe								
Lab Code:		Case	No.:		SAS No.:		SDG	NO.:	D9B190134		
Initial Ca	libratio	n Source:	Inorganic	Ventures	5						
Continuing	Calibra	tion Source:	Ultra	Scienti	fic						
			Concentrat	ion Units	:: ug/L						
		Initial	Calibration		Conti	nuing Calib	ration				
Ana	lyte	True	Found	%R(1)	True	Found	%R(1)	Found	i %R(1)	м	

5.000

7.087 | 101.2 |

7.000

4.974

5.110 102.2

99.5 CV

⁽¹⁾ Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

Analyte

Mercury

True

Found

Dissolved Metals

-2A-

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Contract:	TestAmerica Irvin	e					
Lab Code:	Case	No.:	SAS No.:		SDG NO.:	D9B190134	
Initial Ca	libration Source:	Inorganic Ver	ntures				
Continuing	Calibration Source:	Ultra Sc	eientific				
		Concentration	Units: ug/L				
	Initial	Calibration	Con	tinuing Calibrati	on		

True

5.000

%R(1)

Found

4.931

%R(1)

97.6

Found

4.879

%R(1)

98.6

⁽¹⁾ Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

Dissolved Metals

-2A-

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Contract:	TestAme	rica Irvin	ıe							
Lab Code:		Case	No.:		SAS No.:		SDG	NO.:	D9B190134	
Initial Ca	libration	Source:	Inorganic	Venture:	<u> </u>					
Continuing	Calibrat	ion Source:	Ultra	Scient	ific					
			Concentrat:	ion Units	s: ug/L					
		Initial	Calibration		Contin	uing Calibra	ation			
Ana	alyte	True	Found	%R(1)	True	Found	%R(1)	Found	d %R(1)	м
Mercu	ry				5.000	5.127	102.5	5	.097 101.9	cv

⁽¹⁾ Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

Dissolved Metals -2B-CRDL STANDARD FOR AA AND ICP

Contract:	TestAmerica I	rvine				
Lab Code:		Case No.:		SAS No.:	 SDG No.:	D9B190134
AA CRDL Sta	ndard Source:	Ultra	Scientific			
ICP CRDL St	andard Source:					

Concentration Units: ug/L

	CRDL Stand	lard for AA		In:	CP Final			
Analyte	True	Found	%R	True	Found	% R	Found	%R
Mercury	0.200	0.19300	96.5					

Comments:

TestAmerica Irvine Dissolved Metals Analysis Data Sheet

Lab Name:

TESTAMERICA DENVER

Client Sample ID:

Lot/SDG Number:

D9B190134

Lab Sample ID:

D9B190000-182B

Matrix:

Basis:

<u>WATER</u>

Lab WorkOrder:

K7EPP

% Moisture:

Wet

Date/Time Collected: Date/Time Received:

Analysis Method:

245.1

Date Leached:

Unit:

<u>ug/L</u>

Date/Time Extracted:

02/19/09 13:30

QC Batch ID:

9050182

Date/Time Analyzed:

02/19/09 16:16

Sample Aliquot:

<u>10 mL</u>

Instrument ID:

<u>023</u>

Dilution	Factor:	<u>1</u>	
----------	---------	----------	--

CAS No.	Analyte	Conc.	MDL	RL	Q
7439-97-6	Mercury	0.027	0.027	0.20	U

Dissolved Metals

-3-

BLANKS

Contract:	TestAmerica	Irvine				
Lab Code:		Case No.:	SAS No.:		SDG NO.:	D9B190134
Preparation	Blank Matrix	(soil/water):	WATER			
Preparation	Blank Concent	ration Units (ug/L	or mg/kg):	UG/L		

		Continuing Calibration Blank (ug/L)						Preparation Blank			
Analyte	(ug/L)	С	1	С	2	С	3	С		c	М
Mercury	0.02	27 U	0.02	27 U	0.0	27 0	0.02	27 U	0.027	ט	CV

Comments:

Dissolved Metals

-3-

BLANKS

Contract:	TestAmerica	Irvine				
Lab Code:	-	Case No.:	SAS No.:		SDG NO.:	D9B190134
Preparation	Blank Matrix	(soil/water):	: WATER			
Preparation	Blank Concen	tration Units	(ug/L or mg/kg):	UG/L		

	Initial Calib. Blank				inuing Blank (Calibrat ug/L)	ion		Preparation		
Analyte	(ug/L)	С	1	С	2	С	3	С		С	м
Mercury	1		0.02	ן טן 7:	0.0	27 U	0.02	27 ט			CV

Comments:

TestAmerica Irvine

Dissolved Metals Analysis Data Sheet

Lab Name:

TESTAMERICA DENVER

Client Sample ID:

LAB MS/MSD

Lot/SDG Number:

D9B190134

MS Lab Sample ID:

D9B190119-001S

Matrix:

WATER

MS Lab WorkOrder:

K7EHT

% Moisture:

N/A

Date/Time Collected:

02/16/09 09:30

Basis:

Unit:

Wet

Date/Time Received:

02/18/09 10:15

Analysis Method:

<u>245.1</u>

Date Leached:

QC Batch ID:

ug/L 9050182 Date/Time Extracted: Date/Time Analyzed:

02/19/09 13:30 02/19/09 16:23

MS Sample Aliquot:

<u>10 mL</u>

Instrument ID:

<u>023</u>

MS Dilution Factor:

1

Analyte	Spike Amount	Sample Result	C	MS Result	С	% Rec	Q	QC Limit
Метешу	5.00	0.030	J	4.57		91		90 - 110

TestAmerica Irvine

Dissolved Metals Analysis Data Sheet

Lab Name:

TESTAMERICA DENVER

Client Sample ID:

LAB MS/MSD

Lot/SDG Number:

D9B190134

MSD Lab Sample ID:

D9B190119-001D

Matrix:

WATER

MSD Lab WorkOrder:

K7EHT

% Moisture:

N/A

SD Lab Workerde

02/16/09 09:30

Basis:

Unit:

<u>N/A</u> <u>Wet</u> Date/Time Collected:
Date/Time Received:

02/18/09 10:15

Analysis Method:

<u>245.1</u>

Date Leached:

20000 12 20

QC Batch ID:

ug/L 9050182 Date/Time Extracted:

02/19/09 13:30 02/19/09 16:25

QC batta id:

10 mL

Date/Time Analyzed: Instrument ID:

023

MSD Sample Aliquot:

MSD Dilution Factor: 1

	Spike Amount	Sample	С	MSD Result	1 L	C % Rec	Q	RPD	Q	QC Limits	
Analyte		Result								% Rec	RPD
Mercury	5.00	0.030	J	4.55		90		0.37		90 - 110	10

TestAmerica Irvine Dissolved Metals Analysis Data Sheet

Lab Name:

TESTAMERICA DENVER

Client Sample ID:

Lot/SDG Number:

D9B190134

Lab Sample ID:

D9B190000-182C

Matrix:

WATER

Lab WorkOrder:

7CDD

% Moisture:

WAIL

Date/Time Collected:

<u>K7EPP</u>

Basis:

<u>N/A</u> <u>Wet</u>

Date/Time Received:

Analysis Method:

245.1

Date Leached:

02/19/09 13:30

Unit: QC Batch ID: ug/L

Date/Time Extracted:
Date/Time Analyzed:

02/19/09 20:18

Sample Aliquot:

9050182 10 mL

Instrument ID:

<u>023</u>

Dilution Factor:

1

Analyte	True	Found	%Rec	Q	Limits
Mercury	5.00	4.63	93		90 - 110

Dissolved Metals

-10-

DETECTION LIMITS

Contract: Test	America Irvine			
Lab Code:	Case No.:	SAS No.:	SDG NO.:	D9B190134
ICP ID Number:		Date: 12/26/2008	-	
Flame AA ID Numb	Cetac M7500 Hg			
Furnace AA ID Nu	umber:			

Analyte	Wave- length (nm)	Back- ground	PQL (ug/L)	MDL (ug/L)	м
Mercury	253.70		0.20	0.027	CV

Comments:	

Dissolved Metals

-13-

PREPARATION LOG

Contract:	TestAmerica	Irvine		_ _		
Lab Code:		Case No.:		SAS No.:	 SDG NO.:	D9B190134
Method:	<u>cv</u>		Prep Method:		 	

Sample ID	Preparation Date	Initial Volume	Final Volume(mL)
MB9050182	2/19/2009	10.0	10.0
Check Sample	2/19/2009	10.0	10.0
INTRA-LAB QC	2/19/2009	10.0	10.0
LAB MS	2/19/2009	10.0	10.0
LAB MSD	2/19/2009	10.0	10.0
ISB1802-01	2/19/2009	10.0	10.0

Comments:

Dissolved Metals

ANALYSIS RUN LOG

Contract:	<u>CestAmerica</u>	Irvine				
Lab Code:		Case No.:	SAS No.:		SDG No.:	D9B190134
Instrument ID	Number: (Cetac M7500 Hg	Method:	CV		
Start Date:	2/19/2009		End Date:	2/19/2009		

Start Date: 2/19	/2009							En	d I	Dat	e:			19	/20	.05											
														Ana	11у	tes	3										
Sample ID.	D/F	Time	% R	A		A S	B A	B E	C D		C R	C 0	C U	F E	P B	M G		H G	N	K	S E	A G	N A	T L	v		N
Cal Blank	1.00	15:48																х									
Std1	1.00	15:50																X									
Std2	1.00	15:52																X								\bigcap	
Std3	1.00	15:54																х									
Std4	1.00	15:57																х									
Std5	1.00	15:59																х			Γ						_
Std6	1.00	16:01																х									
ICB	1.00	16:04			Ī													х								П	
ICV	1.00	16:07																х									
RL .	1.00	16:09																х									_
CCV	1.00	16:11																х									
ССВ	1.00	16:14																х			Γ						_
MB9050182	1.00	16:16																x									_
ZZZZZZ	1.00	16:18																									
INTRA-LAB OC	1.00	16:21																х									
LAB MS	1.00	16:23																х			Γ					\Box	-
LAB MSD	1.00	16:25																х									
ZZZZZZ	1.00	16:27																									
ZZZZZZ	1.00	16:30																								П	
ZZZZZZ	1.00	16:32																									
ZZZZZZ	1.00	16:34																									
CCV	1.00	16:37																X									-
ССВ	1.00	16:39																X									
ccv	1.00	17:02																X									
ССВ	1.00	17:04																X									
ISB1802-01	1.00	17:07																Х									
ZZZZZZ	1.00	17:09																								П	
ZZZZZZ	1.00	17:11																								\Box	
ZZZZZZ	1.00	17:14																									_
ZZZZZZ	1.00	17:16																									_
ZZZZZZ	1.00	17:18												j												T	
ZZZZZZ	1.00	17:21											Ī	j												T	
ZZZZZZ		17:23												j										j	Ť	T	

^{* -} Denotes additional elements (other than the standard CLP elements) are represented on another Form 14

CCB

Dissolved Metals

-14-

ANALYSIS RUN LOG

ontract: TestAmerica irvine																										
Lab Code:		Case	No.:				_	SA	s:	No.	:	_				_	s	DĢ	No	.:	D	9B	19	01	34	_
Instrument ID Number:	Cetac	M7500	Нд				_	Ме	th	od:		(ev		_											
Start Date: 2/19/20	Start Date: 2/19/2009							En	đ I	Dat	e :		2/	19	/20	009	• —			_						
														Ana	ly	tes	5		_							
Sample ID.	D/F	Time	% R	A	1	A S	B A	l	C D			C 0	C C				M N			K	S E	A G		T L		 C N
ZZZZZZ	1.00	17:25																								
ccv	1.00	17:28																X								
CCB	1.00	17:30																Х								
CCV	1.00	20:14																X								
CCB	1.00	20:16																X								
Check Sample	1.00	20:18																X								
ccv	1.00	20:21																х								

1.00 20:23

^{* -} Denotes additional elements (other than the standard CLP elements) are represented on another Form 14

TestAmerica Denver

Sample Receiving Checklist

Lot	#:		D	9B190134 Date/Time Received: 2/18/09 1015
Cor	mpar	ny N	ame	e & Sampling Site: TA Irvine
		_		This Section: Yes No Yes No heck required: □ □ □
Quo	te #:	~	17	1743
Spec	cial Ir	nstruc	tions	S:
	e Zon OT/ES		CDT	/CST • MDT/MST • PD/PST • OTHER
**		•	<u> </u>	
Unj	pack	ing	Che	ecks:
			• • •	
Tem			(°C):	2-b
N/A	Yes	No -		Initials
u				Cooler seals intact? (N/A if hand delivered) If no, document on CUR.
garla.	/	/ -		Chair of custody present? If no document on CUP.
	√ ⊒			Chain of custody present? If no, document on CUR.
				Bottles broken and/or are leaking? If yes, document on CUR.
		2 1		Multiphasic samples obvious? If yes, document on CUR. Proper container & preservatives used? (ref. Attachment D of SOP# DV-QA-0003) If no, document on CUR.
· ·	1			
_	4			pH of all samples checked and meet requirements? If no, document on CUR. Sufficient volume provided for all analysis requested? (ref. Attachment D of SOP# DV-QA-0003) If no,
	١,			document on CUR, and contact PM before proceeding.
v	Ø			Did chain of custody agree with labels ID and samples received? If no, document on CUR.
7				Were VOA samples without headspace? If no, document on CUR.
<u></u>			e e	Were VOA vials preserved? Preservative □HCl □4±2°C □Sodium Thiosulfate □ Ascorbic Acid
,		Z		Did samples require preservation with sodium thiosulfate?
4				If yes to #11, did the samples contain residual chlorine? If yes, document on CUR.
P				Sediment present in dissolved/filtered bottles? If yes, document on CUR.
y	ū	<u> </u>	15.	Is sufficient volume provided for client requested MS, MSD or matrix duplicates? If no, document on CUR, and contact PM before proceeding.
		4	16.	Receipt date(s) > 48 hours past the collection date(s)? If yes, notify PA/PM.
		4	17.	Are analyses with short holding times requested?
			18.	Was a quick Turn Around (TAT) requested?

\QA\Edit\FORMS\Sample Receiving\Sample Receiving Checklist 9-2-08

TestAmerica Denver Sample Receiving Checklist

Le	ot #_	\mathcal{I})91	B190134	
Lo	gin	Che	eks:		Initials
N/Δ	4 Ye	es No			XB_
	Ø		19.	Sufficient volume provided for all analysis requested? (ref. Attachment D of SOP# DV-QA-0003) document on CUR, and contact PM before proceeding.	If no,
Z			20.	Is sufficient volume provided for client requested MS, MSD or matrix duplicates? If no, document of contact PM before proceeding.	n CUR, and
	Þ		21	. Did the chain of custody includes "received by" and "relinquished" by signatures, dates, and times?	
	石		22.	Were special log in instructions read and followed?	
Ø			23.	Were AFCEE metals logged for refrigerated storage?	
	A		24.	Were tests logged checked against the COC? Which samples were confirmed?	
Ø			25.	Was a Rush form completed for quick TAT?	
ʻ⊿′			26.	Was a Short Hold form completed for any short holds?	
		ø	27.	Were special archiving instructions indicated in the General Comments? If so, what were they?	₹
		,			
					_
La	beli	ng ai	nd S	torage Checks:	Initials
-					1
			28.	Was the subcontract COC signed and sent with samples to bottle prep?	
	Ø		29.	Were sample labels double-checked by a second person?	
1			30.	Were sample bottles and COC double checked for dissolved/filtered metals by a second person?	
	1		31.	Did the sample ID, Date, and Time from label match what was logged?	
4			32.	Were stickers for special archiving instructions affixed to each box? See #27	
\neg			33.	Were AFCEE metals stored refrigerated?	
	•				

Document any problems or discrepancies and the actions taken to resolve them on a Condition Upon Receipt Anomaly Report (CUR).

SUBCONTRACT ORDER

TestAmerica Irvine ISB1802

SENDING LABORATORY:

TestAmerica Irvine

17461 Derian Avenue. Suite 100

Irvine, CA 92614

Phone: (949) 261-1022 Fax: (949) 260-3297

Project Manager: Joseph Doak

Client: MWH-Pasadena/Boeing

RECEIVING LABORATORY:

TestAmerica Denver 4955 Yarrow Street Arvada, CO 80002 Phone: (303) 736-0100

Fax: (303) 431-7171

Project Location: CA - CALIFORNIA

Receipt Temperature:

°C

Ice: Y / N

Analysis	Units	Due	Expires	Interlab Price S	Surch	Comments
Sample ID: ISB1802-01	Water		Sampled	l: 02/16/09 14:3	0	
Level 4 + EDD-OUT	N/A	02/25/09	03/16/09 14:30		0%	**LEVEL IV QC, ACCESS 7 EDD**
Mercury - 245.1, Diss -OUT	ug/l	02/25/09	03/16/09 14:30	\$36.00	0%	OUT to Denver, Boeing, J flags
Mercury - 245.1-OUT	ug/l	02/17/09	03/16/09 14:30	\$36.00	100%	OUT to Denver, Boeing, J flags
Containers Supplied:						
125 mL Poly (AX)	1 L Poly w/H	INO3 (B)				

62-17-09 (6:00 Released By Date/Time

Released By TestAmerica

Date/Time

Received By

Date/Time

Page 1 of 1

NPDES - 2809

Metals

Supporting Documentation

Sample Sequence, Instrument Printouts

Client: TA - Irvine - Boeing	
Batch(es) #: 905018Z + 9050/7	4

I certify that, to the best of my knowledge, the attached package represents a complete and accurate copy of the original data.

Signature/Date: Clistaphe Produle 2/20/09

Metals Raw Data RoadMap

LotID		Metal	WorkOrder		e TestDesc	Batch	File Id	Instr	
D9B190134	1	HG	K7EKN1AC	20090219	M2451DS	9050182	090219AA	023	
D9B190134	1	HG	K7EKN1AA	20090219	M2451_L	9050174	090219 A A	023	

Friday, February 20, 2009

Page 1 of 1

METALS PREPARATION LOGS CVAA

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

SUPPLEMENTAL METALS PREP SHEET

(Used in conjunction with METALS PREP LOG/BATCH SUMMARY)

Hg PREP & ANALYSIS - WATERS

SOP: DEN-MT-0015 QC Batch #: 9050187

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica Denver

Prep Date: 02/19/09	Prep By: CGG	Analysis	alysis Date: 02/19/09 Analyst: CGG							
Balance ID:	H53865		Thermo	ometer ID: MT 4025						
Digestion Cycles	Start Time	Temp	L	End Time	Tem	p °C				
	13:30	93		15:30	9	3				
ا Purple color persists or		X Yes	7		lain in Comme	ents below				
		[A] 163		110 11 110 , CAP	nam m comm	onto polott.				
Digestion Tube Lo			- - 0		N. a.l.	N.a.				
For dissolved mercury of				Yes		No No				
One or more samples v										
If "yes", then the metho	d blank and the LCS v	were also filt	ered in th	ne same manner using th		if filter.				
				Analyst(s) Initials:						
Reagents Used										
Reagent	Manufacturer	Lot	#	Standards Log #	Vol	(mL)				
HNO₃	JT Baker	G250	32		0	25				
H₂SO₄	Fisher	E49F	06		0	.5				
HCI	JT Baker	G360	24	to the second	used by it	nstrument				
10% SnCl ₂	Fisher	G206	37	STD-1027-09	added by	nstrument				
NaCl / NH₂OH	Fisher	G286	17	STD-1026-09	0	.6				
	Fisher	G064	76	310-1020-09		.0				
KMnO ₄	Fisher	G106	62	STD-0920-09		.5				
$K_2S_2O_8$	Fisher	0836	61	STD-0351-09	0	.8				
Parent Calibration Sto	ock Standards									
	Lot#			Verification #	Exp.	Date				
Second Source	A2-HG020	56		STD-2364-08	06/0	1/09				
Primary Calibration	H00091			STD-1683-08	05/0	1/09				
Standards Preparation	η			Final digestate	volume = 10	mls				
Standards	Final Conc	Parent St	andard	Standards Log #	Vol (mL)	Pipette				
Cal Working	10 mg/L	Primary	/ Cal		1.00	7				
Daily Cal Working	100 ug/L	Cal Wo	rking	1	1.00	7				
ICAL 0.2	0.2 ug/L	Daily Cal V	Vorking]	0.2	7				
ICAL 0.5	0.5 ug/L	Daily Cal V	Vorking		0.5	7				
ICAL 1	1.0 ug/L	Daily Cal V	Vorking	See	1.0	7				
ICAL 2	2.0 ug/L	Daily Cal V	Vorking	Attached	2.0	7				
ICAL 5	5.0 ug/L	Daily Cal V	Vorking	Standards Log	5.0	24				
ICAL 10	10 ug/L	Daily Cal V	Vorking	Printouts	10.0	24				
CCV	5 ug/L	Daily Cal V	Vorking]	5.0	7				
ICV Intermed	700 ug/L	ICV St	ock		0.70	7				
ICV Daily Working	7.0 ug/L	ICV Inte	rmed		1.00	7				
LCS	5 ug/L	Daily Cal V			0.5	7				
MS/MSD	5 ug/L	Daily Cal V	Vorking		0.5	7				
RL	0.2 ug/L	Daily Cal V	Vorking		0.2	7				
Second Source ICV In	termediate Stock St	andard Prep)	Standards Log #:	STD-0993-09					
NOTE: Details for e	ach reagent & standard pre	ep are documer	nted in the	attached Standards Preparation	Logbook Record	1.				
Comments 7:5501.	ved- 245.1-	- Boo	119							
I certify that all inform	ation above is corre									
Signature: Cis	Grodal	le		Date: 2/2	0/09					
REVIEWED BY:	7			Date: フ/フ	11/19					

Batch Number:

9050182

TestAmerica Laboratories, Inc. Metals Prep Log/ Batch Summary

Prepared By:	
OJ	

Prep Date: 02/19/09 M

			Prep Date:	02/19/09	
Lot	Work Order		Due Date:	02/24/09	Initial Weight/Volume
D9B190000 Water	K7EPP	В /	Due Date: SDG:		<u>10 mL</u>
D9B190000 Water	К7ЕРР	C 2	Due Date: SDG:		<u>10 mL</u>
D9B190119 Water	K7EHT Dissolved	3	Due Date: 02/24/09 SDG:		<u>10 mL</u>
D9B190119 Water	K7EHT Dissolved	s 4	Due Date: 02/24/09 SDG:		<u>10 mL</u>
D9B190119 Water	K7EHT Dissolved	D 5	Due Date: ()2/24/09 SDG:		<u>10 mL</u>
D9B190121 Water	K7EH5 Dissolved	7	Due Date: 02/24/09 SDG:		<u>10 mL</u>
D9B190123 Water	K7EH6 Dissolved		Due Date: 02/24/09 SDG:		<u>10 mL</u>
D9B190125 Water	K7EJJ Dissolved	5	Due Date: 02/24/09 SDG:		<u>10 mL</u>
D9B190126 Water	K7EJ6 Dissolved	7	Due Date: 02/24/09 SDG:		<u>10 mL</u>
D9B190127 Water	K7EJ8 Dissolved	10	Due Date: 02/24/09 SDG:		<u>10 mL</u>
D9B190128 Water	K7EJ9 Dissolved	11	Due Date: 02/24/09 SDG:		<u>10 mL</u>
D9B190129 Water	K7EKA Dissolved	12	Due Date: 02/24/09 SDG:		<u>10 mL</u>
D9B190130 Water	K7EKD Dissolved	13	Due Date: 02/24/09 SDG:		<u>10 mL</u>
D9B190131 Water	K7EKE Dissolved	14	Due Date: 02/24/09 SDG:		<u>10 mL</u>
D9B190132 Water	K7EKK Dissolved	15	Due Date: 02/24/09 SDG:		<u>10 mL</u>
D9B190133 Water	K7EKJ Dissolved	14	Due Date: 02/24/09 SDG:		<u>10 mL</u>
D9B190134 Water	K7EKN Dissolved	17	Due Date: 02/24/09 SDG:		<u>10 mL</u>
D9B190135 Water	K7EKM Dissolved	(g	Due Date: 02/24/09 SDG:		<u>10 mL</u>
D9B190137 Water	K7EKW Dissolved	19	Due Date: 02/24/09 SDG:		<u>10 mL</u>
D9B190138 Water	K7EKX Dissolved	70	Due Date: 02/24/09 SDG:		<u>10 mL</u>

1/20/09

Batch Number:

9050182

TestAmerica Laboratories, Inc. Metals Prep Log/ Batch Summary

Prepared By:	
(J)	

Prep Date:

02/19/09

02/24/09

Due Date: Work Order Initial Weight/Volume Lot **Comments:**

B-BLANK; C-CHECK SAMPLE; L-CHECK SAMPLE DUPLICATE; P-SERIAL DILUTION; S-MATRIX SPIKE SAMPLE; D-MATRIX SPIKE DUPLICATE SAMPLE

SUPPLEMENTAL METALS PREP SHEET

(Used in conjunction with METALS PREP LOG/BATCH SUMMARY)

Hg PREP & ANALYSIS - WATERS

SOP: DEN-MT-0015 QC Batch #:

9050174

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica Denver

Prep Date: 02/19/09	Prep By: CGG		Analysis	Date: 02/19/09	Analyst: CGG	÷
Balance ID:	H53865		Thermo	meter ID: MT 4025		
Digestion Cycles	Start Time	Temp		End Time	Tem	ıp °C
	13:30	93		15:30	9	
Purple color persists or		X Yes		<u> </u>	lain in Comme	
		<u> </u>		1110 11 110 , exp	nam m comm	ents below.
Digestion Tube Lo		1 2 11 6				N1 -
For dissolved mercury				Yes	=	No
One or more samples v						No
If "yes", then the metho	d blank and the LCS v	were also filt	ered in th	ne same manner using th		of filter.
				Analyst(s) Initials:		
Reagents Used		=				
Reagent	Manufacturer	Lot		Standards Log #	Vol	(mL)
HNO ₃	JT Baker	G250				25
H₂SO₄	Fisher	E49F				.5
HCI	JT Baker	G360	24	235 27 Sept.		nstrument
10% SnCl ₂	Fisher	G206		STD-1027-09	added by	instrument
NaCl / NH ₂ OH	Fisher	G286		STD-1026-09	0	.6
-	Fisher	G064				
KMnO₄	Fisher	G106		STD-0920-09	1	.5
K ₂ S ₂ O ₈	Fisher	0836	31	STD-0351-09	0.	.8
Parent Calibration Sto						
	Lot #			Verification #		Date
Second Source	A2-HG0205	56		STD-2364-08		1/09
Primary Calibration	H00091			STD-1683-08	<u></u>	1/09
Standards Preparation				Final digestate		
Standards	Final Conc	Parent Sta		Standards Log #	Vol (mL)	Pipette
Cal Working	10 mg/L	Primary			1.00	7
Daily Cal Working	100 ug/L	Cal Wo	<u></u>		1.00	7
ICAL 0.2	0.2 ug/L	Daily Cal V			0.2	7
ICAL 0.5	0.5 ug/L	Daily Cal V			0.5	7
ICAL 1	1.0 ug/L	Daily Cal V	<u> </u>	See	1.0	7
ICAL 2	2.0 ug/L	Daily Cal V		Attached	2.0	7
ICAL 5	5.0 ug/L	Daily Cal V		Standards Log	5.0	24
ICAL 10 CCV	10 ug/L	Daily Cal V		Printouts	10.0	24
ICV Intermed	5 ug/L	Daily Cal V			5.0	7
ICV Intermed	700 ug/L	ICV St			0.70	7
LCS	7.0 ug/L	ICV Inte			1.00 0.5	7
MS/MSD	5 ug/L 5 ug/L	Daily Cal V Daily Cal V			0.5	7
RL	0.2 ug/L	Daily Cal V			0.3	7
Second Source ICV In			·	Standards Log #:	<u> </u>	
***		<u> </u>				
			ted in the	attached Standards Preparation	n Logbook Record	J.
Comments Total						
I certify that all inform	1 .		olete.	1_	0/00	
Signature: (lis	Droda	le		Date: っ/2	0109	
REVIEWED BY:	1			Date:	20/60	

Batch Number: 9050174

TestAmerica Laboratories, Inc. Metals Prep Log/ Batch Summary

Prepared By:	
00	

Prep Date:

02/19/09

		riep Date.	02/17/07 0	
Lot	Work Order	Due Date:	02/24/09 Initial W	eight/Volume
D9B190000 Water	K7EN8 B /	Due Date: SDG:	<u>10 mL</u>	
D9B190000 Water	K7EN8 C 2	SDG:	<u>10 mL</u>	
D9B190119 Water	K7EHT Total	Due Date: 02/24/09 SDG:	<u>10 mL</u>	
D9B190119 Water	K7EHT S 4 Total	Due Date: 02/24/09 SDG:	<u>10 mL</u>	
D9B190119 Water	K7EHT Dラ Total	Due Date: 02/24/09 SDG:	<u>10 mL</u>	
D9B190121 Water	K7EH5 6	Due Date: 02/24/09 SDG:	<u>10 mL</u>	
D9B190123 Water	K7EH6 7 Total	Due Date: 02/24/09 SDG:	<u>10 mL</u>	
D9B190125 Water	K7EJJ 8	Due Date: 02/24/09 SDG:	<u>10 mL</u>	
D9B190126 Water	K7EJ6 9 Total	Due Date: 02/24/09 SDG:	<u>10 mL</u>	
D9B190127 Water	K7EJ8 / O. Total	Due Date: 02/24/09 SDG:	<u>10 mL</u>	
D9B190128 Water	K7EJ9 // Total	Due Date: 02/24/09 SDG:	<u>10 mL</u>	
D9B190129 Water	K7EKA Total	Due Date: 02/24/09 SDG:	<u>10 mL</u>	
D9B190130 Water	K7EKD /3 Total	Due Date: 02/24/09 SDG:	10 mL	
D9B190131 Water	Total	Due Date: 02/24/09 SDG:	No total Vo). Pecicled 10 mL	
D9B190132 Water	K7EKK 15	Due Date: 02/24/09 SDG:	5 2/18/09(10 mL	
D9B190133 Water	K7EKJ Total	Due Date: 02/24/09 SDG:	<u>10 mL</u>	
D9B190134 Water	K7EKN Total	Due Date: 02/24/09 SDG:	<u>10 mL</u>	
D9B190135 Water	K7EKM / 8 Total	Due Date: 02/24/09 SDG:	<u>10 mL</u>	2/20/0
D9B190137 Water	K7EKW / 9 Total	Due Date: 02/24/09 SDG:	10 mL	$\sqrt{v^0}$
D9B190138 Water	K7EKX 2-0	Due Date: 02/24/09 SDG:	<u>10 mL</u>	

Batch Number:

9050174

Work Order

TestAmerica Laboratories, Inc. Metals Prep Log/ Batch Summary

Prepared By:	
00	

Prep Date:

02/19/09

Due Date:

02/24/09

Initial Weight/Volume

Comments:

Lot

B-BLANK; C-CHECK SAMPLE; L-CHECK SAMPLE DUPLICATE; P-SERIAL DILUTION; S-MATRIX SPIKE SAMPLE; D-MATRIX SPIKE DUPLICATE SAMPLE

METALS SAMPLE DATA CVAA

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica Denver

Standards Preparation Logbook Record

Feb-20-2009

Logbook: \\Densvr06\StdsLog\metals.std Analyst: grisdalec STD1683-08, 1000 mg/L Hg Calibration Stock Standard (Ultra)

Vendor: Ultra Scientific (Metals)

Lot No.: H00091

Vendor's Expiration Date: 05-01-2009

Solvent: 2% HN03

Date Prep./Opened: 04-03-2008

Date Received: 03-31-2008

Date Expires(1): 04-03-2009 (1 Year) Date Expires(2): 05-01-2009 (None)

Date Verified: 12-31--4714 by 0 (Verification ID: -)

Initial Conc (%)

Final Conc (%)

Mercuric Nitrate

100.00

100.00

STD2364-08, Hg Inorganic Ventures ICV 100ppm Std

Analyst: grisdalec

Vendor: Inorganic Ventures

Lot No.: A2-HG02056

Vendor's Expiration Date: 06-01-2009

Solvent: 3.3%HCl

Date Prep./Opened: 05-01-2008

Date Received: 05-02-2007

Date Expires(1): 05-01-2009 (1 Year) Date Expires(2): 06-01-2009 (None)

Date Verified: 12-31--4714 by 0 (Verification ID: -)

Component

Initial Conc (mg/L)

Final Conc (mg/L)

Hg

100.00

100.00

STD0437-09, 10 mg/L Hg Calibration Std

Solvent: 1% HN03

Lot No.: G02058

Analyst: wellsd

Date Prep./Opened: 01-26-2009

Volume (ml): 100.00

Date Expires(1): 02-26-2009 (1 Month)

Date Expires(2): 02-26-2009 (1 Month)

Date Verified: 12-31--4714 by - (Verification ID: 0)

Parent Std No.: STD1683-08, 1000 mg/L Hg Calibration Stock Standard (Ultra) Aliquot Amount (ml): 1.0000

Parent Date Expires(1): 04-03-2009

Parent Date Expires(2): 05-01-2009

Final Conc (mg/L)

Component Mercuric Nitrate Initial Conc (%) 100.00

10,000

Page 1 of 4

Solvent: 1% HNO3 Lot No.: G02058 Volume (ml): 100.00 Date Prep./Opened: 02-18-2009
Date Expires(1): 03-04-2009 (2 Weeks)
Date Expires(2): 06-01-2009 (None)

Date Verified: 12-31--4714 by - (Verification ID: 0)

STD0993-09, Hg Inorganic Ventures ICV 700ppb

Parent Std No.: STD2364-08, Hg Inorganic Ventures ICV 100ppm Std Aliquot Amount (ml): 0.7000

Parent Date Expires(1): 05-01-2009 Parent Date Expires(2): 06-01-2009

 $\underline{\text{Component}} \qquad \underline{\text{Initial Conc (mg/L)}} \qquad \underline{\text{Final Conc (ug/L)}}$

Hg 100.00 700.00

STD1017-09, 100 ppb Hg Calibration Std

Solvent: 1% HN03 Lot No.: G17027 Volume (ml): 100.00

Date Prep./Opened: 02-19-2009

Date Expires(1): 02-20-2009 (1 Day)
Date Expires(2): 05-01-2009 (None)

Date Verified: 12-31--4714 by - (Verification ID: 0)

Parent Std No.: STD0437-09, 10 mg/L Hg Calibration Std Aliquot Amount (ml): 1.0000

Parent Date Expires(1): 02-26-2009 Parent Date Expires(2): 02-26-2009

Component Initial Conc (mg/L) Final Conc (ug/ml)

Mercuric Nitrate 10,000 100.00

STD1018-09, Blank Daily Hg Calibration Std

Vendor: Baker Lot No.: G17027

Solvent: 1% HN03 Date Prep./Opened: 02-19-2009

Date Expires(1): 08-19-2009 (6 Months)

Date Expires(2): 02-19-2010 (1 Year)

Date Verified: 12-31--4714 by 0 (Verification ID:-)

Component Initial Conc (%) Final Conc (%)

Nitric Acid 1.0000 1.0000

STD1019-09, 0.2 ppb Daily Hg Calibration Std/ Analyst: GRISDALEC

Solvent: 1% HN03 Lot No.: G 7027 Volume (ml): 100.00

Date Prep./Opened: 02-19-2009

Date Expires(1): 02-20-2009 (1 Day)

Date Expires(2): 05-01-2009 (None)

Date Verified: 12-31--4714 by - (Verification ID: 0)

Page 2 of 4

Analyst: GRISDALEC

Analyst: GRISDALEC

Analyst: GRISDALEC

Parent Std No.: STD1017-09, 100 ppb Hg Calibration Std	Aliquo	ot Amount (ml): 0.2000
Parent Date Expires(1): 02-20-2009 Parent Date Expires(2)	-	(m). 0.2000
Component Mercuric Nitrate	Initial Conc (ug/ml)	Final Conc (ug/ml) 0.2000
Mercuric Nitrate	100.00	0.2000
STD1020-09, 0.5 ppb Daily Hg Calibration Std	Ana	lyst: GRISDALEC
Solvent: 1% HN03 Lot No.: G17027 Date Prep./Opened: 02-19-2009 Date Expires(1): 02-20-2009 (1 Day) Date Expires(2): 05-01-2009 (None) Date Verified: 12-314714 by - (Verification ID: 0)		Volume (ml): 100.00
Parent Std No.: STD1017-09, 100 ppb Hg Calibration Std Parent Date Expires(1): 02-20-2009 Parent Date Expires(2)	: 05-01-2009	ot Amount (ml): 0.5000
Component	Initial Conc (ug/ml)	Final Conc (ug/ml)
Mercuric Nitrate	100.00	0.5000
STD1021-09, 1.0 ppb Daily Hg Calibration Std	Ana	lyst: GRISDALEC
Solvent: 1% HN03 Lot No.: G17027 Date Prep./Opened: 02-19-2009 Date Expires(1): 02-20-2009 (1 Day) Date Expires(2): 05-01-2009 (None) Date Verified: 12-314714 by - (Verification ID: 0)		Volume (ml): 100.00
Parent Std No.: STD1017-09, 100 ppb Hg Calibration Std Parent Date Expires(1): 02-20-2009 Parent Date Expires(2)	•	ot Amount (ml): 1.0000
Component	Initial Conc (ug/ml)	Final Conc (ug/ml)
Mercuric Nitrate	100.00	1.0000
STD1022-09, 2.0 ppb Daily Hg Calibration Std	Ana	lyst: GRISDALEC
Solvent: 1% HN03 Lot No.: G17027 Date Prep./Opened: 02-19-2009 Date Expires(1): 02-20-2009 (1 Day) Date Expires(2): 05-01-2009 (None) Date Verified: 12-314714 by - (Verification ID: 0)		Volume (ml): 100.00
Parent Std No.: STD1017-09, 100 ppb Hg Calibration Std Parent Date Expires(1): 02-20-2009 Parent Date Expires(2)	•	ot Amount (ml): 2.0000
Component	Initial Conc (ug/ml)	Final Conc (ug/ml)

Page 3 of 4

Mercuric Nitrate

2.0000

100.00

STD1023-09, 5.0 ppb Daily Hg Calibration Std

Solvent: 1% HN03

Lot No.: G17027

Volume (ml): 100.00

Analyst: GRISDALEC

Date Prep./Opened: 02-19-2009

Date Expires(1): 02-20-2009 (1 Day) Date Expires(2): 05-01-2009 (None)

Date Verified: 12-31--4714 by - (Verification ID: 0)

Parent Std No.: STD1017-09, 100 ppb Hg Calibration Std

Aliquot Amount (ml): 5.0000

Parent Date Expires(1): 02-20-2009

Parent Date Expires(2): 05-01-2009

Final Conc (ug/ml)

Component Mercuric Nitrate Initial Conc (ug/ml) 100.00

5.0000

STD1024-09, 10.0 ppb Daily Hg Calibration Std

Solvent: 1% HN03

Lot No.: G17027

Analyst: GRISDALEC Volume (ml): 100.00

Date Consumed: 12-06-2006

Date Prep./Opened: 02-19-2009

Date Expires(1): 02-20-2009 (1 Day) Date Expires(2): 05-01-2009 (None)

Date Verified: 12-31--4714 by - (Verification ID: 0)

Aliquot Amount (ml): 10.000

Parent Std No.: STD1017-09, 100 ppb Hg Calibration Std Parent Date Expires(1): 02-20-2009

Parent Date Expires(2): 05-01-2009

Initial Conc (ug/ml)

Final Conc (ug/ml)

Mercuric Nitrate

Component

100.00

10.000

STD1025-09, Hg Daily ICV 7ppb Calibration Std

Solvent: 1% HNO3

Lot No.: G17027

Volume (ml): 100.00

Analyst: GRISDALEC

Date Prep./Opened: 02-19-2009

Date Expires(1): 02-20-2009 (1 Day)

Date Expires(2): 06-01-2009 (None)

Date Verified: 12-31--4714 by - (Verification ID: 0)

Parent Std No.: STD0993-09, Hg Inorganic Ventures ICV 700ppb

Aliquot Amount (ml): 1.0000

Parent Date Expires(1): 03-04-2009

Parent Date Expires(2): 06-01-2009

Initial Conc (ug/L)

Final Conc (ug/L)

Hg

Component

700.00

7.0000

Chrotophu Disdale 2/20/09

Page 4 of 4

Sequence:	090219AA	Date: 02/19/09 15:48	3/09 15:48	A	Analyst: CGG	550		ICV:	CAL/CCV:
# Sample ID	ID Lot No.	Batch	Matrix	Raw	P.	Result Units	s %B	Analyzed Date	Comment
1 Cal Blank				00:0	1.0	0.00 dag	:	02/19/09 15:48	
2 Std1	= 0.200			0.20	1.0	0.20 ppb	100.0%		
3 Std2	= 0.500	VA		0.50	1.0	0.50 ppb	100.0%	02/19/09 15:52	
4 Std3	= 1.00			1.00	1.0	1.00 ppb	100.0%	02/19/09 15:54	
5 Std4	= 2.00		YAB A	2.00	1.0	2.00 ppb	100.0%	02/19/09 15:57	
6 Std5	= 5.00			5.00	1.0	5.00 ppb	100.0%	02/19/09 15:59	
7 Std6	= 10.0	-		10.00	1.0	10.00 ppb	100.0%	02/19/09 16:01	
8 ICB			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-0.00	1.0	-0.00 ppb		02/19/09 16:04	
6 ICV	= 7.00			7.09	1.0	7.09 ppb	101.2%	02/19/09 16:07	
0 PL	= 0.200			0.19	1.0	0.19 ppb		02/19/09 16:09	
1 CCV	= 5.00			5.11	1.0	5.11 ppb	102.2%	7 02/19/09 16:11	
2 CCB				00.0	1.0	0.00 ppb		02/19/09 16:14	
13 K7EPPBF	3F D9B190000	9050182		0.00	1.0	0.00 ppb		02/19/09 16:16	7 Joseph 1
4_KZEPPCF	E D9B190000 = 5.00	9050182		4.37	D :	4.37 ppb	97.5%	02/19/09 10:18	My Dad Land
15 K7EHTF	. D9B190119-1	9050182	AQUEOUS	0.03	1.0	0.03 ppb		02/19/09 16:21	Rerun later.
16 K7EHTSF	3F D9B190119-1 = 5.00	9050182	AQUEOUS	4.57	1.0	4.57 ppb		02/19/09 16:23	
17 K7EHTDF		9050182	AQUEOUS	4.55	1.0	4.55 ppb		02/19/09 16:25	50/02/2 60
48 KZEHTSE	E D9B190119-1 = 5.00	9050182	AQUEOUS	4.65	6	4:05 ppb		02/19/09 16:27	
19 KZEHTDE	F D9B190119-1 = 5.00	9050182	AQUEQUS	4.65	9:	4:05 ppb		05:91 60/61/20	VA COOFFEEN OLON
20 K7EH5F	. D9B190121-1	9050182	AQUEOUS	0.02	1.0	0.02 ppb		02/19/09 16:32	
21 K7EH6F	D9B190123-1	9050182	AQUEOUS	0.01	1.0	0.01 ppb		02/19/09 16:34	90/02/2 Ac
22 CCV	= 5.00			4.97	1.0	4.97 ppb	99.5%	02/19/09 16:37	
23 CCB				0.00	1.0	0.00 ppb		02/19/09 16:39	
24 K7EJJF	D9B190125-1	9050182	AQUEOUS	0.01	1.0	0.01 ppb		02/19/09 16:41	
25 K7EJ6F	D9B190126-1	9050182	AQUEOUS	0.01	1.0	0.01 ppb		02/19/09 16:44	
26 K7EJ8F	D9B190127-1	9050182	AQUEOUS	0.01	1.0	0.01 ppb		02/19/09 16:46	
27 K7EJ9F		9050182	AQUEOUS	0.01	1.0	0.01 ppb		02/19/09 16:48	
28 K7EKAF		9050182	AQUEOUS	0.01	1.0	0.01 ppb	-	02/19/09 16:51	
29 K7EKDF	- D9B190130-1	9050182	AQUEOUS	0.01	1.0	0.01 ppb		02/19/09 16:53	
30 K7EKEF	D9B190131-1	9050182	AQUEOUS	0.01	1.0	0.01 ppb		02/19/09 16:55	
31 K7EKKF	D9B190132-1	9050182	AQUEOUS	0.00	1.0	0.00 ppb		02/19/09 16:57	
32 K7EKJ	D9B190133-1	9050474	V AQUEQUS	0.00	1.0	0.00 ppb		02/19/09 17:00	
33 CCV	= 5.00	Ż	120/0%	4.88	1.0	4.88 ppb	97.6%	02/19/09 17:02	
000				0		1111		10.00	

View Page 2 of 5

Sequence: Osciology Associated Osciology Sequence Osciology Associated Osciology Osc	Denver	AMALAMA AMARA AMARA AMARA AMARA AMARA AMARA AMARA AMARA AMARA AMARA AMARA AMARA AMARA AMARA AMARA AMARA AMARA A				40.00				RUN SUMMARY
New Debte oct Amalyse Code	Method: CV	HG - Mercury (Cold Vapor N	Aercury)			Ē	strument: A (C	,23)		Reported: 02/20/09 07:53:42
CERNITE DBB190135-1 Soon Rath Name DF Result Units %R Analyzed Date Comment CTERNITE DBB190135-1 Soon Rath Soon Rath Lot Op DpD CO21909 T709 CO21909 CO21909 T709 T709 CO21909 T709 ence:</th> <th>090219AA</th> <th>Date: 02/19</th> <th>9/09 15:48</th> <th>A</th> <th>alyst: C</th> <th>)GG</th> <th>317,4010 1000000</th> <th>ICV:</th> <th>CAL/CCV:</th>	Sequence:	090219AA	Date: 02/19	9/09 15:48	A	alyst: C)GG	317,4010 1000000	ICV:	CAL/CCV:
KTEKNE DBBISO134-1 9660182 AOUEOUS 0.01 ptb 0.02/19/09 7.07 0.07 ptb 0.07/19/09			Batch	Matrix	Raw				Analyzed Date	
KTEKMF DBB190135-1 9601042 AOLECIUS 0.00 ppb 0.01 ppb			9050182	AQUEOUS	0.01	1.0	0.01 ppb			
KTEKKYF D98190138-1 9050182 AQUECUS 0.01 ppb 0271909 17714 KTEKKYF D98190138-1 9050182 AQUECUS 0.01 ppb 0.271909 17714 KTENSC D98190138-1 9050174 AQUECUS 0.02 1.0 0.00 ppb 0.271909 17714 KTENSC D98190119-1 5.00 9050174 AQUECUS 4.28 1.0 4.28 pb 0.01 <td></td> <td></td> <td>9050182</td> <td>AQUEOUS</td> <td>00.00</td> <td>1.0</td> <td>0.00 ppb</td> <td></td> <td>1</td> <td></td>			9050182	AQUEOUS	00.00	1.0	0.00 ppb		1	
CERNO Debi Brioline Trial Substitute Debi Brioline Trial Substitute Debi Brioline Trial Substitute Debi Brioline Trial Substitute Debi Brioline Trial Substitute Debi Brioline Trial Substitute Debi Brioline Trial Substitute Debi Brioline Trial Substitute Debi Brioline Trial Substitute Debi Brioline Trial Substitute Debi Brioline Trial Substitute Debi Brioline Trial Substitute Trial Substitute Debi Brioline Trial Substitute Debi Brioline Trial Substitute Debi Brioline Trial Substitute Debi Brioline Trial Substitute Trial Substitute Trial Substitute Trial Substitute Trial Substitute Trial Substitute Trial Substitute Trial Substitute Trial Substitute Trial Substitute Trial Substitute Trial Substitute Trial Substitute Trial Substitute Trial Substitute Trial Substitute Trial Substitute Trial Substitute Trial Substitute Subs			9050182	AQUEOUS	0.01	1.0	0.01 ppb		1	
K7ENEB DB6190000 6050174 0.00 10 0.00 ppb 656% 201909 17:16 K7ENISC DB61900000 = 5.00 9050174 AQUECUS 4.78 10 0.03 ppb 0.03 ppb 10 0.03 ppb 0.03 pp			9050182	AQUEOUS	0.01	1.0	0.01 ppb		i	
K7EHRC DBB190119-1 5.00 9050174 4.78 1.0 4.78 pp. 65.6% 20219/09 1721 K7EHT DBB190119-1 5.00 9050174 AQUEGUS 6.02 1.0 4.29 pb. 02/19/09 1725 CVCY = 5.00 9050174 AQUEGUS 4.29 1.0 4.29 pb. 02/19/09 1725 CVCY = 5.00 9050174 AQUEGUS 4.29 1.0 4.29 pb. 02/19/09 1725 CVCY = 5.00 9050174 AQUEGUS 4.29 1.0 4.29 pb. 02/19/09 1726 QCI79/09 1726 CVC = 5.00 9050174 AQUEGUS 4.25 1.0 4.29 pb. QCI79/09 1726 QCI77/09 1726 CVC = 5.00 9050174 AQUEGUS 0.01 pb. QCI79/09 1739 QCI77/09 1739 QCI77/09 1739 QCI77/09 1739 QCI77/09 1739 QCI77/09 1739 QCI77/09 1739 QCI77/09 1739 QCI77/09 1739 QCI77/09 1739 QCI77/09 1739 QCI77/09 1739 QCI77			9050174		0.00	1.0	0.00 ppb			
CCV CON		D9B190000 =	9050174		4.78	1.0	4.78 ppb	95.6%	i .	
K7EHTS D98190119-1 = 5.00 9050174 AQUEOUS 4.29 ppb G021909 17.25 CCV = 5.00 9050174 AQUEOUS 4.29 ppb 98.6% Q21909 17.25 CCV = 5.00 9050174 AQUEOUS 4.29 ppb 98.6% Q21909 17.26 CCV = 5.00 9050174 AQUEOUS 0.0 1.0 -0.0 ppb Q21909 17.26 CCP = 5.00 9050174 AQUEOUS 0.0 1.0 -0.0 ppb Q21909 17.28 KTEHS D98190121-1 5060174 AQUEOUS 0.04 1.0 0.04 ppb Q21909 17.39 KTEHS D98190122-1 9050174 AQUEOUS 0.04 ppb Q21909 17.34 ACA FIRAL KTEHS D98190122-1 9050174 AQUEOUS 0.05 ppb Q21909 17.34 ACA FIRAL KTEA D98190122-1 9050174 AQUEOUS 0.05 ppb Q21909 17.44 ACA FIRAL ACA FIRAL ACA FIRAL ACA FIRAL ACA FIRAL ACA FIRAL ACA FIRAL ACA FIRAL		D9B190119-1	9050174	AQUEOUS	0.03	1.0	0.03 ppb			
CCB COB COD		D9B190119-1 =	9050174	AQUEOUS	4.29	1.0	4.29 ppb		ì	the contract of the contract o
CCV = 5.00 4.98 1.0 4.98 ppb 98.6% 02/19/09 17:29 CCB CCB COB 1.0 -0.00 ppb 0.0 0.0 1.0 -0.00 ppb CCB CCB CCB 1.0 -0.00 ppb 0.0		D9B190119-1 =		AQUEOUS	4.29	1.0	4.29 ppb		i	Consideration contains the regard to be strong to the stro
CCB CCB CCB CCB CCD operation <td></td> <td>= 5.00</td> <td></td> <td></td> <td>4.93</td> <td>1.0</td> <td>4.93 ppb</td> <td>, %9.86</td> <td>02/19/09 17:28</td> <td></td>		= 5.00			4.93	1.0	4.93 ppb	, %9.86	02/19/09 17:28	
KTEHITE DBBHB01121 - 5.00 GOSCITATA AQUECOUS 4.25 pb 1.0 4.25 pb COZINIONE 17-34 MAP C_OA FILMS a Los of Los					-0.00	1.0	-0.00 ppb		02/19/09 17:30	
KTEHIO DOBIGIOLISTIC 5:00 973774 AGUECOUS 1:0 4.28 ppc 0.04 ppc 0.219/09 17:37 As M SD Ce KTEH DOBISIO121-1 9050174 AQUECOUS 0.04 ppc 0.04 ppc 0.219/09 17:37 As M SD Ce 0.04 ppc 0.219/09 17:37 As M SD Ce 0.04 ppc 0.0219/09 17:34 As M SD Ce 0.05 ppc 0.219/09 17:34 As M SD As	- 1 "	D9B190119-1-	-0050174	AQUEOUS	4.25	þ.	4.25 ppb		02/10/09 17:92	
K7EHS D98190121-1 9050174 AQUEOUS 0.04 pbb 02/19/09 17:37 ACTION COLVIDIO K7EHG D98190123-1 9050174 AQUEOUS 0.01 1.0 0.04 pbb 02/19/09 17:37 ACTION COLVIDIO	- 1	D0B199119-1	9050174	AQUEOUS	4.29	b.	4.29 ppb		02/19/09 17:34	
KTEH6 D98190123-1 9050174 AQUEOUS 0.01 pbb 0.2/19/09 17:39 ACA = 2/20/C3 PM KTELA D98190125-1 9050174 AQUEOUS 0.05 1.0 0.04 ppb 02/19/09 17:41 ACA = 2/20/C3 PM KTELA D98190125-1 9050174 AQUEOUS 0.05 1.0 0.05 ppb 02/19/09 17:44 KTELA D98190126-1 9050174 AQUEOUS 0.05 1.0 0.05 ppb 02/19/09 17:46 KTEKA D98190129-1 9050174 AQUEOUS 0.05 ppb 02/19/09 17:46 KTEKA D98190129-1 9050174 AQUEOUS 0.05 ppb 02/19/09 17:46 CCV = 5.00		D9B190121-1	9050174	AQUEOUS	0.04	1.0	0.04 ppb		02/19/09 17:37	Malady cow.
KTELU D98190125-1 9050174 AQUEOUS 0.05 ppb 0219/09 17:41 CVI KTELG D98190126-1 9050174 AQUEOUS 0.04 10 0.04 pb 02/19/09 17:44 CVI KTELG D98190127-1 9050174 AQUEOUS 0.05 pb 02/19/09 17:46 CVI KTELG D98190129-1 9050174 AQUEOUS 0.05 pb 02/19/09 17:51 CVI CCV = 5.00 - 6.00 1.0 0.05 pb 02/19/09 17:53 CVI CCV = 5.00 - 0.00 1.0 0.05 pb 02/19/09 17:53 CVI CCV = 5.00 - 0.00 1.0 0.05 pb 02/19/09 17:51 CVI CCV = 5.00 - 0.00 1.0 0.03 pb 02/19/09 17:52 CVI KTEKA D98190132-1 9050174 AQUECUS 0.03 pb 02/19/09 18:01 CVI KTEKA D98190133-1 9050174 AQUECUS<		D9B190123-1	9050174	AQUEOUS	0.01	1.0	0.01 ppb		02/19/09 17:39	2/2010
KTEL6 D9B190126-1 9050174 AQUEOUS 0.04 1.0 0.04 ppb 02/19/09 17:46 KTEL8 D9B190127-1 9050174 AQUEOUS 0.02 1.0 0.02 ppb 02/19/09 17:46 KTEL9 D9B190127-1 9050174 AQUEOUS 0.05 ppb 1.0 0.05 ppb 02/19/09 17:51 KTEKA D9B190129-1 9050174 AQUEOUS 0.0 1.0 0.03 ppb 02/19/09 17:57 CCB CCB CCB CCB COR 10 0.0		D9B190125-1	9050174	AQUEOUS	0.05	1.0	0.05 ppb		!	
KTEJ8 D9B190127-1 9050174 AQUEOUS 0.02 ppb 0.02 ppb 0.01 p		D9B190126-1	9050174	AQUEOUS	0.04	1.0	0.04 ppb			
KTEJ9 D9B190128-1 9050174 AQUEOUS 0.05 ppb 0.2/19/09 17:48 KTEKA D9B190129-1 9050174 AQUEOUS 0.05 ppb 0.05 ppb 0.2/19/09 17:51 CCV = 5.00 AQUEOUS 0.05 1.0 0.05 ppb 0.2/19/09 17:52 CCV = 5.00 AQUEOUS 0.05 1.0 0.00 ppb 0.2/19/09 17:55 CCVB AQUEOUS 0.03 1.0 0.03 ppb 0.2/19/09 17:55 0.2/19/09 17:55 KTEKA D9B190132-1 9050174 AQUEOUS 0.01 ppb 0.2/19/09 18:02 0.2/19/09 18:02 KTEKA D9B190133-1 9050174 AQUEOUS 0.02 ppb 0.02 ppb 0.2/19/09 18:04 KTEKA D9B190137-1 9050174 AQUEOUS 0.01 ppb 0.02 ppb 0.2/19/09 18:04 KTEKA D9B190137-1 9050174 AQUEOUS 0.02 ppb 0.02 ppb 0.2/19/09 18:04 KTEKA D9B190000 9050174 AQUEOUS 0.03 ppb 0.2/19/09 18:04 KTEKA		D9B190127-1	9050174	AQUEOUS	0.02	1.0	0.02 ppb			
K7EKA D9B190129-1 9050174 AQUEOUS 0.05 pbb 98.5% 02/19/09 17:51 CCV = 5.00 4.92 1.0 4.92 pbb 98.5% 02/19/09 17:53 CCB CCS 1.0 -0.00 ppb 0.01 0.00 17:55 CCB K7EKD D9B190132-1 9050174 AQUEOUS 0.01 ppb 0.2/19/09 17:57 K7EKA D9B190132-1 9050174 AQUEOUS 0.01 ppb 0.2/19/09 18:02 K7EKA D9B190132-1 9050174 AQUEOUS 0.02 1.0 0.01 ppb 0.2/19/09 18:02 K7EKA D9B190135-1 9050174 AQUEOUS 0.02 1.0 0.02 ppb 0.2/19/09 18:04 K7EKA D9B190135-1 9050174 AQUEOUS 0.02 1.0 0.02 ppb 0.2/19/09 18:04 K7EKA D9B190000 5.00 1.0 0.03 ppb 0.2/19/09 18:14 0.03 K7EKA D9B1900000 5.00		D9B190128-1	9050174	AQUEOUS	0.05	1.0	0.05 ppb			
CCV = 5.00 COV = 5.00 PDB 98.5% 02/19/09 17:53 PDB		D9B190129-1	9050174	AQUEOUS	0.05	1.0	0.05 ppb			
CCB CCB -0.00 1.0 -0.00 ppb 02/19/09 17:55 CV19/09 17:55 K7EKD D9B190130-1 9050174 AQUEOUS 0.01 1.0 0.01 ppb 02/19/09 17:57 0					4.92	1.0	4.92 ppb	98.5%		
K7EKD D9B190130-1 9050174 AQUEOUS 0.03 ppb 02/19/09 17:57 K7EKK D9B190132-1 9050174 AQUEOUS 0.11 1.0 0.11 ppb 02/19/09 18:00 K7EKJ D9B190133-1 9050174 AQUEOUS 0.03 ppb 02/19/09 18:02 K7EKN D9B190134-1 9050174 AQUEOUS 0.02 ppb 02/19/09 18:04 K7EKN D9B190137-1 9050174 AQUEOUS 0.00 ppb 02/19/09 18:04 K7EKN D9B190138-1 9050174 AQUEOUS 0.00 ppb 02/19/09 18:04 K7EKN D9B190138-1 9050174 AQUEOUS 0.03 ppb 02/19/09 18:14 K7EKN D9B190138-1 AQUEOUS 0.03 1.0 0.03 ppb 02/19/09 18:14 K7EKX D9B1901038-1 AQUEOUS 0.03 1.0 0.03 ppb 02/19/09 18:14 K7EKX D9B190000 5.00 9050173 4.83 1.0 0.03 90.03					-0.00	1.0	-0.00 ppb			
K7EKK D9B190132-1 9050174 AQUEOUS 0.11 ppb 02/19/09 18:00 K7EKJ D9B190133-1 9050174 AQUEOUS 0.03 1.0 0.03 ppb 02/19/09 18:02 K7EKN D9B190134-1 9050174 AQUEOUS 0.02 1.0 0.02 ppb 02/19/09 18:04 K7EKN D9B190135-1 9050174 AQUEOUS 0.00 1.0 0.00 ppb 02/19/09 18:07 K7EKN D9B190137-1 9050174 AQUEOUS 0.00 1.0 0.00 ppb 02/19/09 18:11 K7EKN D9B190000 5.00 9050174 AQUEOUS 0.03 ppb 0.01 ppb 02/19/09 18:11 K7EN3C D9B1900000 = 5.00 9050173 4.83 1.0 0.00 ppb 0.00 ppb 02/19/09 18:14 0.00 ppb CCV = 5.00 4.83 1.0 4.83 ppb 96.6% 02/19/09 18:18 0.00 ppb CCB PRISOR 0.00 ppb 0.00 ppb 0.00 ppb 0.00 ppb 0.00 ppb 0.00 ppb 0.00 ppb 0.00 ppb		D9B190130-1	9050174	AQUEOUS	0.03	1.0	0.03 ppb		i	
K7EKJ D9B190133-1 9050174 AQUEOUS 0.03 ppb 02/19/09 18:02 K7EKN D9B190134-1 9050174 AQUEOUS 0.02 ppb 02/19/09 18:04 K7EKN D9B190135-1 9050174 AQUEOUS 0.00 1.0 0.00 ppb 02/19/09 18:07 K7EKN D9B190135-1 9050174 AQUEOUS 0.00 1.0 0.00 ppb 02/19/09 18:07 K7EKN D9B190136-1 9050174 AQUEOUS 0.00 1.0 0.00 ppb 02/19/09 18:04 02/19/09 18:04 K7EN3E D9B190000 5.00 9050173 AQUEOUS 0.00 1.0 0.00 ppb 02/19/09 18:14 02/19/09 18:16 K7EN3C D9B190000 5.00 9050173 4.83 1.0 4.83 ppb 90.66% 02/19/09 18:16 CCV = 5.00 PDB180282-1 9050173 AQUEOUS 0.00 ppb 90.00 90.90 90.90 90.90 90.90 90.90 90.90 90.		D9B190132-1	9050174	AQUEOUS	0.11	1.0	0.11 ppb			
K7EKN D9B190134-1 9050174 AQUEOUS 0.02 1.0 0.02 ppb 0.2/19/09 18:04 K7EKM D9B190135-1 9050174 AQUEOUS 0.00 1.0 0.00 ppb 0.2/19/09 18:07 K7EKW D9B190135-1 9050174 AQUEOUS 0.07 1.0 0.07 ppb 0.2/19/09 18:07 K7EKX D9B190137-1 9050174 AQUEOUS 0.03 1.0 0.03 ppb 0.2/19/09 18:14 K7EN3E D9B190000 9050173 AQUEOUS 0.00 1.0 0.00 ppb 0.2/19/09 18:14 K7EN3C D9B190000 5.00 9050173 4.83 1.0 4.83 ppb 96.6% 02/19/09 18:16 CCV = 5.00 4.96 1.0 4.96 ppb 99.3% 02/19/09 18:18 CCS CCB 1.0 0.00 ppb 0.00 ppb 0.01 ppb 0.01 ppb 0.01 ppb 0.01 ppp CCB TOW TOW 0.00 ppb 0.00 ppb 0.00 ppb 0.00 ppb 0.00 ppb 0.00 ppb CCB<		D9B190133-1	9050174	AQUEOUS	0.03	1.0	0.03 ppb		3	
K7EKM D9B190135-1 9050174 AQUEOUS 0.00 1.0 0.00 ppb 02/19/09 18:07 K7EKW D9B190137-1 9050174 AQUEOUS 0.07 1.0 0.03 ppb 02/19/09 18:11 K7EKX D9B190137-1 9050174 AQUEOUS 0.03 1.0 0.03 ppb 02/19/09 18:11 K7EKX D9B190000 5.00 9050173 AQUEOUS 0.00 1.0 -0.00 ppb 02/19/09 18:16 K7EN3C D9B190000 5.00 9050173 4.83 1.0 4.83 ppb 96.6% 02/19/09 18:16 1.0 CCV = 5.00 9050173 AQUEOUS 1.0 0.00 ppb 99.3% 02/19/09 18:18 1.0 CCB PROSONA 9050173 AQUEOUS 0.00 ppb 0.00 ppb 0.016 ppb 0.016 ppb 0.016 ppb 0.016 ppb 0.016 ppb 0.016 ppb 0.016 ppb 0.016 ppb 0.016 ppb 0.016 ppb 0.016 ppb 0.016 ppb 0.016 ppb 0.016 ppb 0.016 ppb 0.016 ppb 0.016 ppb 0.016 pp	h	D9B190134-1	9050174	AQUEOUS	0.05	1.0	0.02 ppb			
K7EKW D9B190137-1 9050174 AQUEOUS 0.07 1.0 0.07 ppb 0.2/19/09 18:09 1.0 0.03 ppb 0.02/19/09 18:11 K7EKX D9B190138-1 9050174 AQUEOUS 0.03 1.0 0.00 ppb 0.2/19/09 18:14 1.0 0.00 ppb 0.2/19/09 18:14 1.0 0.00 ppb 0.00 ppb 0.2/19/09 18:16 1.0 0.00 ppb 0.00 ppb 0.2/19/09 18:18 1.0 0.00 ppb 0.00 p		D9B190135-1	9050174	AQUEOUS	0.00	1.0	0.00 ppb			
K7EKX D9B190138-1 9050174 AQUEOUS 0.03 ppb 0.03 ppb 0.2/19/09 18:14 0.03 ppb <th< td=""><td></td><td></td><td>9050174</td><td>AQUEOUS</td><td>0.07</td><td>1.0</td><td>0.07 ppb</td><td></td><td></td><td></td></th<>			9050174	AQUEOUS	0.07	1.0	0.07 ppb			
K7EN3E D9B190000 9050173 -0.00 1.0 -0.00 ppb 02/19/09 18:14 202/19/09 18:14 K7EN3C D9B190000 = 5.00 9050173 4.83 1.0 4.83 ppb 96.6% 02/19/09 18:16 1.0 0.00 ppb 1.0 0.00 ppb 99.3% 02/19/09 18:18 1.0 0.00 ppb 1.0 0.00 ppb 0.019/09 18:20 1.0 0.016 ppb 0.019/09 18:23 0.019/09 18:23 0.019/09 18:23		D9B190138-1	9050174	AQUEOUS	0.03	1.0	0.03 ppb			
K7EN3C D9B190000 = 5.00 9050173 4.83 1.0 4.83 pbb 96.6% 02/19/09 18:16 CCV = 5.00 4.96 1.0 4.96 ppb 99.3% / 02/19/09 18:18 CCB CCB 1.0 -0.00 ppb 99.3% / 02/19/09 18:20 K7DXC D9B180282-1 9050173 AQUEOUS 0.16 ppb 0.16 ppb 0.2/19/09 18:23			9050173		-0.00	1.0	-0.00 ppb			
CCV = 5.00 4.96 1.0 4.96 ppb 99.3% / 02/19/09 18:18 CCB -0.00 1.0 -0.00 ppb 02/19/09 18:20 K7DXC D9B180282-1 9050173 AQUEOUS 0.16 ppb 0.16 ppb 0.2/19/09 18:23		D9B190000 =	9050173		4.83	1.0	4.83 ppb	96.6%	i	
CCB -0.00 1.0 -0.00 ppb 02/19/09 18:20 K7DXC D9B180282-1 9050173 AQUEOUS 0.16 ppb 0.2/19/09 18:23					4.96	1.0	4.96 ppb	99.3%		
K7DXC D9B180282-1 9050173 AQUEOUS 0.16 1.0 0.16 ppb 02/19/09		The state of the s			-0.00	1.0	-0.00 ppb			
			9050173	AQUEOUS	0.16	1.0	0.16 ppb			

View Page 3 of 5

Denver	iver	***************************************									RUN SUMMARY	۱RY
Meth	od: CVF	Method: CVHG - Mercury (Cold Vapor Mercury)	ercury)			=	Instrument: A (023)	١ (023)			Reported: 02/20/09 07:53:42	3:42
Sequence:	:uce:	090219AA	Date: 02/19/09 15:4	9/09 15:48	₹	Analyst: CGG	990		ICV:		CAL/CCV:	
#	Sample ID	ID Lot No.	Batch	Matrix	Raw	DF	Result U	Units %R	Analyzed Date	d Date	Comment	ø
69	K7DXCS	D9B180282-1 = 5.00	9050173	AQUEOUS	4.55	1.0	4.55 ppb	- - - -	02/19/09	18:25		
20	K7DXCD	D9B180282-1 = 5.00	9050173	AQUEOUS	4.91	1.0	4.91 ppb	q	02/19/09	18:27		
7	K7EF3	D9B190114-1	9050173	AQUEOUS	-0.00	1.0	-0.00 ppb	q	02/19/09	18:30		
72	K7EGE	D9B190114-3	9050173	AQUEOUS	0.09	1.0	0.09 ddd	Q	02/19/09	18:32		
73	K7EGM	D9B190114-5	9050173	AQUEOUS	0.01	1.0	0.01 ppb	-Ω	02/19/09	18:34		
74	K7EGQ	D9B190114-7	9050173	AQUEOUS	-0.00	1.0	-0.00 ppb	q	02/19/09	18:37		
75	K7EG3	D9B190114-9	9050173	AQUEOUS	-0.00	1.0	-0.00 ppb	þ	05/19/09	18:39		
9/	K7EHD	D9B190114-11	9050173	AQUEOUS	0.80	1.0	0.80 ppb	q	02/19/09	18:41		
77	CCV	= 5.00			4.97	1.0	4.97 ppb	b 99.4%	6 > 02/19/09	18:44		
78	CCB		77.70.00		0.00	1.0	0.00 ppb	q	02/19/09	18:46		
1 6/	K7D19BT	T D9B180000	9050172		0.00	1.0	0.00 ppb	q	02/19/09	18:48		
80	K7ENVCT	T D9B190000 = 5.00	9050172		4.92	1.0	4.92 ppb	b 98.4%	6 / 02/19/09	18:50		
1 8	K7A6XT	D9B170257-1	9050172	LEACHATE	0.05	1.0	0.05 ppb	9	02/19/09	18:53		
82	K7A6XP5T	5T D9B170257	9050172	LEACHATE	0.01	5.0	0.01 ppb	Q	02/19/09	18:55		
83	K7A6XST	T D9B170257-1 = 5.00	9050172	LEACHATE	4.78	1.0	4.78 ppb	9	02/19/09	18:57		
48	K7A6XDT	T D9B170257-1 = 5.00	9050172	LEACHATE	4.19	0.1	4.19 ppb	Q	02/19/09	19:00		
85	K7D2VBT	T D9B180000	9050170		0.00	1.0	0.01 ppb	٩	02/19/09	19:02		
98	K7ENRCT	T D9B190000 = 5.00	9050170		4.98	1.0	4.98 ppb	99.5%	6 102/19/09	19:04		
87	K7A62T	D9B170257-2	9050170	LEACHATE	0.00	1.0	0.00 ppb	٩	02/19/09	19:07		
88	CCV	= 5.00			5.10	1.0	5.10 ppb	b 101.9%	% → 02/19/09	19:09		
68	CCB		-		-0.00	1.0	-0.00 ppb	Q	02/19/09	19:11		
6	K7A62P5T	5T D9B170257	9050170	LEACHATE	0.00	5.0	0.01 ppb	q	02/19/09	19:14		
9	K7A62ST	D9B170257-2 = 5.00	9050170	LEACHATE	5.27	1.0	5.27 ppb	q	02/19/09	19:16		
95	K7A62DT	T D9B170257-2 = 5.00	9050170	LEACHATE	4.85	1.0	4.85 ppb	q	02/19/09	19:18		
8	K7EPWBF	3F D9B190000	9050183		-0.00	1.0	-0.00 ppb	Q	02/19/09	19:21		
94	K7EPWCF	CF D9B190000 = 5.00	9050183		5.06	1.0	5.06 ppb	b 101.3%	% ~ 02/19/09	19:23		
92	K7D51			AQUEOUS	-0.00	1.0	-0.00 ppb	q	02/19/09	19:25		
96	K7D51SF	F D9B180302-2 = 5.00	9050183	AQUEOUS	5.21	1.0	5.21 ppb	Q	02/19/09	19:27	андамай даминай байдай анадамаа анада анада (1977-1971).	
6	K7D51DF	F D9B180302-2 = 5.00	9050183	AQUEOUS	5.06	1.0	5.06 ppb	q	02/19/09	19:30		
86	K7D55F	D9B180302-4	9050183	AQUEOUS	-0.00	1.0	-0.00 ppb	q	02/19/09	19:32		
66	CC	= 5.00			5.10	1.0	5.10 ppb	b 101.9%	% _02/19/09	19:34		
	CCB				0.00	1.0	0.00 ppb	q	02/19/09	19:37		
101	K7D57F	D9B180302-6	9050183	AQUEOUS	0.00	1.0	0.00 ppb	Q	02/19/09	19:39	REVIAN DARIMBADAN MENENGKAN KAMBADAN MENENGKAN (V. 1874). DE 18 MILIONIA MENENGKAN MEN	
102	K7D59F	D9B180302-8	9050183	AQUEOUS	-0.00	1.0	-0.00 ppb		02/19/09	19:41		

Page 4 of 5

View

				A CONTRACTOR OF THE CONTRACTOR		China tendentena consu	TO COMPANY AND ADDRESS OF THE PROPERTY OF THE PARTY OF TH		The state of the s		
Sequence:	ice:	090219AA	Date: 02/19/09 15:4	/09 15:48	Ą	Analyst: CGG	566		ICV:	CAL/CCV:	
ÿ #	Sample ID	Lot No.	Batch	Matrix	Raw	DF	Result Units	ts %R	Analyzed Date	Comment	Ø
103 X	K7D6FF	D9B180302-10	9050183	AQUEOUS	-0.00	1.0	-0.00 ppb		02/19/09 19:44		:
104 K	K7D6HF	D9B180302-12	9050183	AQUEOUS	-0.00	1.0	-0.00 ppb		02/19/09 19:46	A CONTRACTOR OF THE CONTRACTOR	
105 K	K7D6LF	D9B180302-14	9050183	AQUEOUS	0.00	0.	0.00 ppb		02/19/09 19:48	A	
106 K	K7EPKB	D9B190000	9050181		-0.00	1.0	-0.00 ppb		02/19/09 19:51		
107 K	K7EPKC	D9B190000 = 5.00	9050181		4.97	1.0	4.97 ppb	99.4%	02/19/09 19:53		
108 K	K7D5W	D9B180302-1	9050181	AQUEOUS	0.01	1.0	0.01 ppb		02/19/09 19:55	The state of the s	
109 K	K7D5WS	D9B180302-1 = 5.00	9050181	AQUEOUS	4.67	1.0	4.67 ppb		02/19/09 19:57	The state of the s	
110 C	CCV	= 5.00	and define common description and the contract of the contract	The state of the s	5.13	1.0	5.13 ppb	102.6%	✓ 02/19/09 20:00		
11	CCB				-0.00	1.0	-0.00 ppb		02/19/09 20:02		
112 K	K7D5WD	D9B180302-1 = 5.00	9050181	AQUEOUS	4.66	1.0	4.66 ppb		02/19/09 20:04		
113 K	K7D52	D9B180302-3	9050181	AQUEOUS	0.01	1.0	0.01 ppb		02/19/09 20:07		
114 K	K7D56	D9B180302-5	9050181	AQUEOUS	0.01	1.0	0.01 ppb		02/19/09 20:09		
115 C	CCV	= 5.00		the state of the s	5.13	1.0	5.13 ppb	102.5%	602/19/09 20:14	The state of the s	Manager statement - processor in an imperior
116 C	CCB				00.0	1.0	0.00 dpp		02/19/09 20:16		
117 K	K7EPPCF	D9B190000 = 5.00	9050182	THE REST OF THE PARTY CALLED STATE OF THE PA	4.63	1.0	4.63 ppb	92.5%	~02/19/09 20:18	7 %	
118 C	ccv	= 5.00			5.10	1.0	5.10 ppb	101.9%	✓ 02/19/09 20:21		
119 C	CCB				00.0	1.0	0.00 ppb		02/19/09 20:23	The second secon	
120 K	K7D58	D9B180302-7	9050181	AQUEOUS	-0.00	1.0	-0.00 ppb		02/19/09 20:25		
121 K	K7D6E	D9B180302-9	9050181	AQUEOUS	-0.00	1.0	-0.00 ppb		02/19/09 20:28		
122 K	K7D6G	D9B180302-11	9050181	AQUEOUS	00.0	1.0	0.00 ppb		02/19/09 20:30		
123 K	K7D6K	D9B180302-13	9050181	AQUEOUS	0.00	1.0	0.00 ppb		02/19/09 20:32		
	K7EPFB	D9B190000	9050177		-0.00	1.0	-0.00 ppb		02/19/09 20:35	Accomplished of the register of	
	K7EPFC	D9B190000 = 5.00	9050177	THE PARTY OF THE P	5.06	1.0	5.06 ppb	101.2%	√ 02/19/09 20:37		
126 C	CCV	= 5.00		The state of the s	5.16	1.0	5.16 ppb	103.2%	02/19/09 20:39		
127 C	CCB				-0.00	1.0	-0.00 ppb		02/19/09 20:42	A 11 - 10 - 10 - 10 - 10 - 10 - 10 - 10	
128 K	K7C9X	D9B180183-1	9050177	AQUEOUS	-0.00	1.0	-0.00 ppb		02/19/09 20:44		
129 K	K7C9XS	D9B180183-1 = 5.00	9050177	AQUEOUS	4.99	1.0	4.99 ppb		02/19/09 20:46		
130 K	K7C9XD	D9B180183-1 = 5.00	9050177	AQUEOUS	5.03	1.0	5.03 ppb		02/19/09 20:49		
5 자	K7C90	D9B180183-2	9050177	AQUEOUS	-0.00	1.0	-0.00 ppb		02/19/09 20:51		
132 K	K7C91	D9B180183-3	9050177	AQUEOUS	0.00	1.0	0.00 ppb		02/19/09 20:53		
133 K	K7C92	D9B180183-4	9050177	AQUEOUS	0.00	1.0	0.00 ppb		02/19/09 20:55		
134 K	K7C93	D9B180183-5	9050177	AQUEOUS	-0.00	1.0	-0.00 ppb		02/19/09 20:58		
135 K	K7C95	D9B180183-7	9050177	AQUEOUS	-0.00	0.	-0.00 ppb		02/19/09 21:00		
136 K	K7DA9	D9B180189-1	9050177	AQUEOUS	0.08	1.0	0.08 ppb		02/19/09 21:02		

of 5
age 5
Б
View

CCV = 5.00 Batch CCB = 5.00 9050177 K7DQ6 D9B180260-1 9050177 K7DQ6 D9B180264-1 9050177 K7DRV D9B180264-2 9050177 K7DRW D9B180264-3 9050177 K7DRW D9B180264-3 9050177 K7DRW D9B180264-3 9050177 K7DRW D9B180264-3 9050178 K7DRU D9B180192-1 5.00 9050178 K7DCL D9B180192-1 5.00 9050178 K7DCLS D9B180192-2 9050178 K7DCV D9B180192-3 9050178 K7DCV D9B180192-4 9050178 K7DCV D9B180192-5 9050178 K7DCV D9B180192-6 9050178 K7DCS D9B180192-7 9050178 K7DCS D9B180192-1 9050178 K7DDG D9B180192-1 9050178 K7DDC D9B180192-1 9050178 K7DDC D9B180238-1 9050178		Analyst: CGG	99		icv:	CAL/CCV:
CCV = 5.00 CCB 9050177 K7DQ6 D9B180260-1 9050177 K7DRC D9B180264-1 9050177 K7DRX D9B180264-2 9050177 K7DRX D9B180264-3 9050177 K7DRX D9B180264-3 9050177 K7DR D9B180000 = 5.00 9050178 K7DCL D9B180192-1 9050178 K7DCL D9B180192-1 9050178 K7DCL D9B180192-2 9050178 K7DCV D9B180192-3 9050178 K7DCV D9B180192-4 9050178 K7DCV D9B180192-5 9050178 K7DCV D9B180192-5 9050178 K7DC D9B180192-7 9050178 K7DC D9B180192-7 9050178 K7DC D9B180192-9 9050178 K7DC D9B180192-1 9050178 K7DD D9B180192-1 9050178 K7DD D9B180192-1 9050178 K7DDQ D9B180192-1 905	Raw	DF F	Result Units	%B	Analyzed Date	Comment
CCB K7DQ6 D9B180260-1 9050177 K7DQ6 D9B180260-2 9050177 K7DRV D9B180264-1 9050177 K7DRX D9B180264-3 9050177 K7DR0 D9B180264-3 9050177 K7DR0 D9B180264-3 9050178 K7EPHC D9B180000 5.00 9050178 K7DCL D9B180192-1 5.00 9050178 K7DCLS D9B180192-1 5.00 9050178 K7DCV D9B180192-3 9050178 K7DCV D9B180192-4 9050178 K7DCV D9B180192-5 9050178 K7DC D9B180192-4 9050178 K7DC D9B180192-5 9050178 K7DC D9B180192-6 9050178 K7DC D9B180192-7 9050178 K7DC D9B180192-1 9050178 K7DDQ D9B180192-1 9050178 K7DDQ D9B180192-1 9050178 K7DLC D9B180238-1 9050178 K7DLC <t< td=""><td>5.03</td><td>1.0</td><td>5.03 ppb</td><td>100.7%</td><td>, 02/19/09 21:05</td><td></td></t<>	5.03	1.0	5.03 ppb	100.7%	, 02/19/09 21:05	
K7DQ6 D9B180260-1 9050177 K7DRC D9B180264-1 9050177 K7DRW D9B180264-2 9050177 K7DR0 D9B180264-3 9050177 K7DR0 D9B180000 9050178 K7EPHB D9B190000 9050178 K7EPHC D9B180000 5.00 9050178 K7DCL D9B180192-1 5.00 9050178 K7DCLS D9B180192-1 5.00 9050178 K7DCV D9B180192-2 9050178 K7DCX D9B180192-4 9050178 K7DCX D9B180192-5 9050178 K7DC1 D9B180192-6 9050178 K7DC3 D9B180192-6 9050178 K7DC4 D9B180192-7 9050178 K7DC9 D9B180192-9 9050178 K7DDQ D9B180192-10 9050178 K7DDQ D9B180192-10 9050178 K7DDQ D9B180192-11 9050178 K7DLC D9B180238-1 9050178 K7DLC D9B180238-1 <td>0.00</td> <td>1.0</td> <td></td> <td></td> <td>02/19/09 21:07</td> <td></td>	0.00	1.0			02/19/09 21:07	
K7DRC D9B180260-2 9050177 K7DRW D9B180264-1 9050177 K7DRW D9B180264-2 9050177 K7DRO D9B180264-3 9050177 K7DRO D9B180000 5.00 9050178 K7EPHC D9B180000 5.00 9050178 K7DCL D9B180192-1 5.00 9050178 K7DCLS D9B180192-1 5.00 9050178 K7DCLD D9B180192-1 5.00 9050178 K7DCV D9B180192-2 9050178 K7DCV D9B180192-4 9050178 K7DCV D9B180192-5 9050178 K7DC D9B180192-6 9050178 K7DC D9B180192-7 9050178 K7DC D9B180192-8 9050178 K7DC D9B180192-9 9050178 K7DD D9B180192-10 9050178 K7DD D9B180192-12 9050178 K7DD D9B180192-12 9050178 K7DLC D9B180238-1 9050178 <t< td=""><td>00.0 SUC</td><td>1.0</td><td>0.00 ppb</td><td></td><td>02/19/09 21:09</td><td></td></t<>	00.0 SUC	1.0	0.00 ppb		02/19/09 21:09	
K7DRW D9B180264-1 9050177 K7DRX D9B180264-2 9050177 K7DR0 D9B180264-3 9050177 K7DR0 D9B180000 = 5.00 9050178 K7EPHC D9B180000 = 5.00 9050178 K7DCL D9B180192-1 = 5.00 9050178 K7DCLS D9B180192-1 = 5.00 9050178 K7DCV D9B180192-2 9050178 K7DCW D9B180192-3 9050178 K7DCW D9B180192-4 9050178 K7DCW D9B180192-5 9050178 K7DC D9B180192-4 9050178 K7DC D9B180192-5 9050178 K7DC D9B180192-7 9050178 K7DC D9B180192-1 9050178 K7DD D9B180192-1 9050178 K7DD D9B180192-1 9050178 K7DDQ D9B180192-1 9050178 K7DLC D9B180238-1 9050178 K7DLC D9B180238-1 9050178 K7DLC	DUS 0.24	1.0	0.24 ppb		02/19/09 21:12	
K7DRX D9B180264-2 9050177 K7DR0 D9B180264-3 9050177 K7EPHB D9B190000 9050178 K7EPHC D9B180000 5.00 9050178 K7DCL D9B180192-1 5.00 9050178 K7DCLS D9B180192-1 5.00 9050178 K7DCLD D9B180192-1 5.00 9050178 K7DCW D9B180192-4 9050178 K7DCW D9B180192-4 9050178 K7DC D9B180192-5 9050178 K7DC D9B180192-6 9050178 K7DC D9B180192-7 9050178 K7DC D9B180192-7 9050178 K7DC9 D9B180192-9 9050178 K7DC9 D9B180192-10 9050178 K7DDQ D9B180192-10 9050178 K7DDQ D9B180192-11 9050178 K7DLC D9B180238-1 9050178 K7DLC D9B180238-1 9050178 K7DLC D9B180238-1 9050178 K7DLK	00:0- SNC	1.0	-0.00 ppb		02/19/09 21:14	
K7DR0 D9B180264-3 9050177 K7EPHB D9B190000 9050178 K7EPHC D9B190000 5.00 9050178 K7DCL D9B180192-1 5.00 9050178 K7DCLS D9B180192-1 5.00 9050178 CCV = 5.00 9050178 K7DCLD D9B180192-2 9050178 K7DCW D9B180192-4 9050178 K7DCN D9B180192-5 9050178 K7DCO D9B180192-5 9050178 K7DCO D9B180192-6 9050178 K7DCS D9B180192-7 9050178 K7DC9 D9B180192-9 9050178 K7DC9 D9B180192-10 9050178 K7DDQ D9B180192-10 9050178 K7DDQ D9B180192-11 9050178 K7DLC D9B180192-12 9050178 K7DLC D9B180238-1 9050178 K7DLC D9B180238-1 9050178 K7DLK D9B180238-1 9050178 K7DLK D9B180238-3	00.0- SUC	1.0	-0.00 ppb		02/19/09 21:16	
K7EPHB D9B190000 9050178 K7EPHC D9B190000 = 5.00 9050178 K7DCL D9B180192-1 = 5.00 9050178 K7DCLS D9B180192-1 = 5.00 9050178 CCV = 5.00 9050178 K7DCLD D9B180192-1 = 5.00 9050178 K7DCV D9B180192-2 9050178 K7DCX D9B180192-5 9050178 K7DCX D9B180192-5 9050178 K7DC1 D9B180192-5 9050178 K7DC3 D9B180192-5 9050178 K7DC4 D9B180192-6 9050178 K7DC9 D9B180192-7 9050178 K7DDQ D9B180192-1 9050178 K7DDQ D9B180192-1 9050178 K7DDQ D9B180192-1 9050178 K7DLC D9B180192-1 9050178 K7DLC D9B180238-1 9050178 K7DLC D9B180238-1 9050178 K7DLK D9B180238-1 9050178	00.0 SUC	1.0	0.00 ppb		02/19/09 21:19	
K7EPHC D9B190000 = 5.00 9050178 K7DCL D9B180192-1 9050178 K7DCLS D9B180192-1 = 5.00 9050178 CCV = 5.00 9050178 CCV = 5.00 9050178 K7DCLD D9B180192-1 = 5.00 9050178 K7DCV D9B180192-2 9050178 K7DCV D9B180192-4 9050178 K7DCX D9B180192-6 9050178 K7DC1 D9B180192-6 9050178 K7DC3 D9B180192-6 9050178 K7DC4 D9B180192-6 9050178 K7DC9 D9B180192-7 9050178 K7DDD D9B180192-1 9050178 K7DDC D9B180192-1 9050178 K7DDQ D9B180192-1 9050178 K7DDQ D9B180192-1 9050178 K7DLC D9B180238-1 9050178 K7DLK D9B180238-1 9050178	-0.00	1.0	-0.00 ppb		02/19/09 21:21	
K7DCL D9B180192-1 9050178 K7DCLS D9B180192-1 = 5.00 9050178 CCV = 5.00 9050178 CCB K7DCLD D9B180192-2 9050178 K7DCV D9B180192-3 9050178 K7DCW D9B180192-4 9050178 K7DCW D9B180192-6 9050178 K7DC D9B180192-6 9050178 K7DC D9B180192-7 9050178 K7DC D9B180192-7 9050178 K7DC D9B180192-9 9050178 K7DC D9B180192-1 9050178 K7DD D9B180192-1 9050178 K7DD D9B180192-1 9050178 K7DD D9B180192-1 9050178 K7DLC D9B180192-1 9050178 K7DLC D9B180238-1 9050178 K7DLK D9B180238-1 9050178	5.07	1.0	5.07 ppb	101.4%	02/19/09 21:23	
K7DCLS D9B180192-1 = 5.00 9050178 CCV = 5.00 9050178 CCB K7DCLD 9050178 K7DCV D9B180192-1 = 5.00 9050178 K7DCW D9B180192-4 9050178 K7DCW D9B180192-4 9050178 K7DCX D9B180192-5 9050178 K7DC0 D9B180192-6 9050178 K7DC1 D9B180192-7 9050178 K7DC3 D9B180192-8 9050178 K7DC9 D9B180192-9 9050178 K7DDD D9B180192-10 9050178 K7DDQ D9B180192-11 9050178 K7DLC D9B180192-12 9050178 K7DLC D9B180192-12 9050178 K7DLC D9B180238-1 9050178 K7DLC D9B180238-1 9050178 K7DLK D9B180238-3 9050178	00.0- SUC	1.0	-0.00 ppb		02/19/09 21:26	
CCV = 5.00 CCB K7DCLD D9B180192-1 = 5.00 9050178 K7DCLD D9B180192-2 9050178 9050178 K7DCW D9B180192-5 9050178 9050178 K7DCX D9B180192-5 9050178 9050178 K7DC1 D9B180192-6 9050178 9050178 K7DC3 D9B180192-7 9050178 9050178 K7DC9 D9B180192-8 9050178 P050178 K7DDQ D9B180192-10 9050178 P050178 K7DDQ D9B180192-10 9050178 P050178 K7DLC D9B180192-12 9050178 K7DLC D9B180238-1 9050178 K7DLC D9B180238-1 9050178 K7DLC D9B180238-1 9050178	OUS 4.99	1.0	4.99 ppb		02/19/09 21:28	
K7DCLD D9B180192-1 = 5.00 9050178 K7DCLD D9B180192-2 9050178 K7DCW D9B180192-3 9050178 K7DCW D9B180192-4 9050178 K7DC D9B180192-5 9050178 K7DC1 D9B180192-6 9050178 K7DC3 D9B180192-7 9050178 CCV = 5.00 CCB K7DC9 D9B180192-8 9050178 K7DD D9B180192-10 9050178 K7DD D9B180192-1 9050178 K7DDQ D9B180192-1 9050178 K7DLC D9B180192-1 9050178 K7DLC D9B180238-1 9050178 K7DLC D9B180238-1 9050178 K7DLK D9B180238-3 9050178	5.11	1.0	5.11 ppb	102.3%	02/19/09 21:30	
K7DCLD D9B180192-1 = 5.00 9050178 K7DCV D9B180192-2 9050178 K7DCW D9B180192-4 9050178 K7DCX D9B180192-6 9050178 K7DC0 D9B180192-6 9050178 K7DC1 D9B180192-6 9050178 K7DC3 D9B180192-7 9050178 CCV = 5.00 CCB K7DC9 D9B180192-8 9050178 K7DDQ D9B180192-9 9050178 K7DDQ D9B180192-10 9050178 K7DDQ D9B180192-11 9050178 K7DDQ D9B180192-12 9050178 K7DLC D9B180238-1 9050178 K7DLK D9B180238-1 9050178	00.00	1.0	0.00 ppb		02/19/09 21:32	
K7DCV D9B180192-2 9050178 K7DCW D9B180192-3 9050178 K7DCX D9B180192-4 9050178 K7DC1 D9B180192-6 9050178 K7DC1 D9B180192-7 9050178 K7DC5 D9B180192-7 9050178 CCV = 5.00 9050178 K7DC9 D9B180192-8 9050178 K7DDG D9B180192-10 9050178 K7DDG D9B180192-11 9050178 K7DLC D9B180192-12 9050178 K7DLC D9B180238-1 9050178 K7DLK D9B180238-1 9050178	5.04 DUS	1.0	5.04 ppb		02/19/09 21:35	
K7DCW D9B180192-3 9050178 K7DCX D9B180192-4 9050178 K7DC0 D9B180192-6 9050178 K7DC1 D9B180192-7 9050178 K7DC4 D9B180192-7 9050178 CCV = 5.00 9050178 K7DC9 D9B180192-8 9050178 K7DDD D9B180192-10 9050178 K7DDC D9B180192-11 9050178 K7DLC D9B180192-12 9050178 K7DLC D9B180238-1 9050178 K7DLC D9B180238-1 9050178 K7DLK D9B180238-1 9050178	DUS 0.01	0. †	- 0.01 ppb		02/19/09 21:37	
K7DCX D9B180192-4 9050178 K7DC0 D9B180192-5 9050178 K7DC1 D9B180192-6 9050178 K7DC3 D9B180192-7 9050178 CCV = 5.00 9050178 CCB CCB 9050178 K7DC9 D9B180192-8 9050178 K7DD D9B180192-10 9050178 K7DD D9B180192-11 9050178 K7DLC D9B180192-12 9050178 K7DLC D9B180238-1 9050178 K7DLK D9B180238-1 9050178	00.0 SUC	1.0	0.00 ppb		02/19/09 21:39	
K7DC0 D9B180192-5 9050178 K7DC1 D9B180192-6 9050178 K7DC5 D9B180192-7 9050178 CCV = 5.00 9050178 CCB D9B180192-8 9050178 K7DC9 D9B180192-9 9050178 K7DD D9B180192-10 9050178 K7DD D9B180192-11 9050178 K7DLC D9B180192-12 9050178 K7DLC D9B180238-1 9050178 K7DLK D9B180238-1 9050178	DUS 0.01	1.0	0.01 ppb		02/19/09 21:42	
K7DC1 D9B180192-6 9050178 K7DC5 D9B180192-7 9050178 CCV = 5.00 9050178 CCB CCB 9050178 K7DC9 D9B180192-9 9050178 K7DDC D9B180192-10 9050178 K7DDC D9B180192-11 9050178 K7DLC D9B180192-12 9050178 K7DLC D9B180238-1 9050178 K7DLK D9B180238-1 9050178	DUS 0.01	1.0	0.01 ppb		02/19/09 21:44	
K7DC5 D9B180192-7 9050178 CCV = 5.00 9050178 CCB 9050178 K7DC9 D9B180192-8 9050178 K7DDC D9B180192-10 9050178 K7DDC D9B180192-11 9050178 K7DL D9B180192-12 9050178 K7DLC D9B180238-1 9050178 K7DLK D9B180238-3 9050178	DUS 0.01	1.0	0.01 ppb		02/19/09 21:46	
CCV = 5.00 CCB 9050178 K7DC9 D9B180192-8 9050178 K7DDD D9B180192-10 9050178 K7DDL D9B180192-11 9050178 K7DLC D9B180192-12 9050178 K7DLC D9B180238-1 9050178 K7DLK D9B180238-1 9050178	00.0 SUC	1.0	0.00 ppb		02/19/09 21:49	
CCB CCB PGB180192-8 9050178 K7DC9 D9B180192-9 9050178 K7DD D9B180192-10 9050178 K7DD D9B180192-11 9050178 K7DL D9B180192-12 9050178 K7DLC D9B180238-1 9050178 K7DLK D9B180238-3 9050178	5.11	1.0	5.11 ppb	102.1%	02/19/09 21:51	
K7DC9 D9B180192-8 9050178 K7DDD D9B180192-9 9050178 K7DDG D9B180192-10 9050178 K7DDL D9B180192-11 9050178 K7DLC D9B180192-12 9050178 K7DLC D9B180238-1 9050178 K7DLK D9B180238-3 9050178	00.00	1.0	0.00 ppb		02/19/09 21:53	
K7DDD D9B180192-9 9050178 K7DDG D9B180192-10 9050178 K7DDL D9B180192-11 9050178 K7DDQ D9B180192-12 9050178 K7DLC D9B180238-1 9050178 K7DLK D9B180238-3 9050178	DUS 0.01	1.0	0.01 ppb		02/19/09 21:56	
K7DDG D9B180192-10 9050178 K7DDL D9B180192-11 9050178 K7DDQ D9B180192-12 9050178 K7DLC D9B180238-1 9050178 K7DLK D9B180238-3 9050178	DUS 0.01	1.0	0.01 ppb		02/19/09 21:58	
K7DDL D9B180192-11 9050178 K7DDQ D9B180192-12 9050178 K7DLC D9B180238-1 9050178 K7DLK D9B180238-3 9050178	00:0 SNC	1.0	0.00 ppb		02/19/09 22:00	
K7DDQ D9B180192-12 9050178 K7DLC D9B180238-1 9050178 K7DLK D9B180238-3 9050178	00:00 SNC	1.0	0.00 ppb	-	02/19/09 22:03	
K7DLC D9B180238-1 9050178 K7DLK D9B180238-3 9050178	00.0 SUC	1.0	0.00 ppb		02/19/09 22:05	
K7DLK D9B180238-3 9050178	10.0 SUC	1.0	0.01 ppb		02/19/09 22:07	
	00.0 SUC	1.0	0.00 ppb		02/19/09 22:10	
166 K7DLM D9B180238-5 9050178 AQUEOUS	00:00 SNC	1.0	0.01 ppb		02/19/09 22:12	
167 K7DLR D9B180238-7 9050178 AQUEOUS	00:00 SNC	1.0	0.00 ppb		02/19/09 22:14	
168 CCV ≈ 5.00	5.11	1.0	5.11 ppb	102.3%	02/19/09 22:17	

CETAC Hg Analysis Report

Analyst: grisdalec

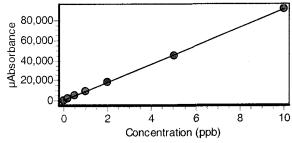
Worksheet file: C:\Program Files\QuickTrace\Worksheets\090219AA.wsz

Date Started: 2/19/2009 2:59:16 PM

Comment:

Results

Sample Name	Туре	Date/Time	Conc (ppb)	μ Ab s '	%RSD Flags	Wt.	Vol.
Cal Blank	STD	02/19/09 03:48:02 pm	0.000	14	18.60	1.00 1.00	1.00
Std1	STD	02/19/09 03:50:20 pm	0.200	1787	0.12	1.00 1.00	1.00
Std2	STD	02/19/09 03:52:38 pm	0.500	4635 *	0.61	1.00 1.00	1.00
Std3	STD	02/19/09 03:54:57 pm	1.000	9314	0.41	1.00 1.00	1.00
Std4	STD	02/19/09 03:57:16 pm	2.000	1 8476	0.80	1.00 1.00	1.00
Std5	STD	02/19/09 03:59:36 pm	5.000	45013	0.78	1.00	1.00
Std6	STD	02/19/09 04:01:57 pm	10.000	91311	0.59	1.00 1.00	1.00



Equation:

R2:

SEE: Flags:

A = 39.070 + 9105.741C0.99993 296.9909

ICB /	ICB 02/19/09 04:04:55 pm	-0.002 25 14.57	1.00 1.00
ICV % Recovery 101.24	ICV 02/19/09 04:07:16 pm	7.087 64572 0.59	1.00 1.00 1.00 1.00
RL % Recovery 96.66	CRDL 02/19/09 04:09:34 pm	0.193 1799 0.58	1.00 1.00

2/20/2009 6:29:52 AM

090219AA.wsz

Sample Name	Туре	Date/Time	Conc (ppb)	μ Abs	%RSD Flags	Wt. ODF	Vol.
CCV / Recovery 102.20	CCV	02/19/09 04:11:54 pm	5.110 /	46567	0.20	1.00 1.00	1.00
ССВ	ССВ	02/19/09 04:14:11 pm	0.000	42	6.48	1.00	1.00
К7ЕРРВ	UNK	02/19/09 04:16:28 pm	0.001 🗸			1.00	1.00
KTEPPE NA, Bad read S	ee re	rus below.	4.374	-30865	1,13	1.00	_1.00
K7EHT	UNK	02/19/09 04:21:03 pm	0.030	316	1.36	1.00	1.00
K7EHTS	UNK	02/19/09 04:23:21 pm	4.566	41619	2.55	1.00	1.00
K7EHTD	UNK	02/19/09 04:25:40 pm	4.549 /	41460	0.52	1.00 1.00	1.00
NA, Confirms	a bove	02/19/00 04:27:57 pm CS 2/20/1	4.652 09	42398	2.56	1.00 1.00	1.00
K7EHTD K7EHTD	UNK	02/19/09 04:30:10 pm	4.650	-42381	1.77	1.00	1.00
K7EH5	UNK	02/19/09 04:32:34 pm	0.019	208	1.56	1.00 1.00	1.00
K7EH6	UNK	02/19/09 04:34:53 pm	0.010	133	2.27	1.00	1.00
CCV % Recovery 99.49	CCV	02/19/09 04:37:13 pm	4.974	45335	0.38	1.00 1.00	1.00
ССВ	ССВ	02/19/09 04:39:30 pm	0.000	43	5.83	1.00	1.00
K7EJJ	UNK	02/19/09 04:41:49 pm	0.007	102	0.79	1.00	1.00
K7EJ6	UNK	02/19/09 04:44:09 pm	0.007	104	3.75	1.00	1.00
K7EJ8	UNK	02/19/09 04:46:28 pm	0.012	149	4.73	1.00	1.00
K7EJ9	UNK	02/19/09 04:48:48 pm	0.007	99	1.47	1.00 1.00	1.00

090219 AA.wsz

Page 2

JUNPDESZ | 2830 10965

Sample Name	Туре	Date/Time	Conc (ppb)	μAbs	%RSD	Flags Wt. OI	Vol. DF
K7EKA	UNK	02/19/09 04:51:08 pm	0.008	109	4.30	1.00 1.	1.00
K7EKD	UNK	02/19/09 04:53:25 pm	0.012	147	1.74	1.00 1.	
K7EKE	UNK	02/19/09 04:55:42 pm	0.010	127	1.45	1.00 1.	1.00
K7EKK	UNK	02/19/09 04:57:59 pm	0.005	87	1.20	1.00	
K7EKJ	UNK	02/19/09 05:00:17 pm	0.004	76	3.46	1.00	
CCV 97.58 ✓	ccv	02/19/09 05:02:37 pm	4.879 🗸	44465	0.80	1.00	
ССВ	ССВ	02/19/09 05:04:54 pm	-0.001 🗸	28	10.33	1.00	
K7EKN	UNK	02/19/09 05:07:12 pm	0.009	118	7.20	s 1.00	
K7EKM	UNK	02/19/09 05:09:30 pm	0.003	64	3.94	1.00	
K7EKW	UNK	02/19/09 05:11:48 pm	0.008	108	2.37	1.00 1.	
K7EKX	UNK	02/19/09 05:14:07 pm	0.010	130	2.53	1.00 1.	1.00
K7EN8B	UNK	02/19/09 05:16:26 pm	0.000 ~	/ 37	10.65	1.00	
K7ENCC	UNK	02/19/09 05:18:45 pm	4.781	43578	0.86	1.00 1.	
K7EHT	UNK	02/19/09 05:21:05 pm	0.032	332	0.65	1.00 1.	
K7EHTS	UNK	02/19/09 05:23:25 pm	4.293 🗸	39128	0.81	1.00 1	
K7EHTD	UNK	02/19/09 05:25:41 pm	4.292	39125	0.66	1.00 1.	
CCV % Recovery 98.61 ✓	CCV	02/19/09 05:28:01 pm	4.931	/ 44936	0.74	1.00 1.	

090219AA.wsz

Page 3

Sample Name	Туре	Date/Time	Conc (ppb)	μ Ab s	%RSD Flags	Wt.	Vol.
CCB	ССВ	02/19/09 05:30:18 pm	-0.001 🗸	33	10.11	1.00 1.00	1.00
4K7EHTS	ONK	02/1 9/09 05:32: 38 pm	4.254	38775	0.99	1.00	_1.00
NA, CONFIRMS	960	ove results		212	0109	1.00	
K7EHTD /	-UNK	02/19/09 05:34:55 pm	4.294		0.61	1.00 1.00	- 1.00
K7EH5	UNK	02/19/09 05:37:12 pm	0.039	390	0.72	1.00	1.00
K7EH6	UNK	02/19/09 05:39:29 pm	0.013	154	1.58	1.00 1.00	1.00
K7EJJ	UNK	02/19/09 05:41:47 pm	0.045	453	0.64	1.00	1.00
K7EJ6	UNK	02/19/09 05:44:05 pm	0.043	427	0.22	1.00	1.00
K7EJ8	UNK	02/19/09 05:46:23 pm	0.022	238	1.12	1.00	1.00
K7EJ9	UNK	02/19/09 05:48:41 pm	0.054	528	0.58	1.00 1.00	1.00
K7EKA	UNK	02/19/09 05:51:00 pm	0.051	502	0.31	1.00 1.00	1.00
CCV % Recovery 98.47	CCV	02/19/09 05:53:20 pm	4.924	, 44873	0.82	1.00 1.00	1.00
ССВ	ССВ	02/19/09 05:55:37 pm	-0.002	22	26.75	1.00	1.00
K7EKD	UNK	02/19/09 05:57:56 pm	0.033	341	0.84	1.00	1.00
K7EKK	UNK	02/19/09 06:00:15 pm	0.106	1003	0.82	1.00 1.00	1.00
K7EKJ	UNK	02/19/09 06:02:35 pm	0.027	287	0.63	1.00	1.00
K7EKN	UNK	02/19/09 06:04:55 pm	0.019	208	2.50	1.00	1.00
K7EKM	UNK	02/19/09 06:07:12 pm	0.000	40	8.88	1.00	1.00

090219AA.wsz

Page 4

J CAPDE 3-1892 10 9 67

Sample Name	Туре	Date/Time	Conc (ppb)	μ Ab s	%RSD	Flags Wt.	Vol.
K7EKW	UNK	02/19/09 06:09:29 pm	0.071	687	0.46	1.00 1.04	1.00
K7EKX	UNK	02/19/09 06:11:46 pm	0.034	345	1.00	1.00	1.00
K7EN3B	UNK	02/19/09 06:14:04 pm	-0.002 /	18	16.76	1.00 1.00	1.00
K7EN3C	UNK	02/19/09 06:16:22 pm	4.832	44036	0.35	1.00 1.0	1.00
CCV 99.25 /	CCV	02/19/09 06:18:42 pm	4.963 ✓	45227	0.80	1.00 1.0	1.00
ССВ	ССВ	02/19/09 06:20:59 pm	-0.002 \	24	10.51	1.00 1.00	1.00
K7DXC	UNK	02/19/09 06:23:17 pm	0.158	1478	0.31	1.00 1.0	1.00
K7DXCS	UNK	02/19/09 06:25:35 pm	4.549 🗸	41463	0.42	1.00 1.0	1.00 0
K7DXCD	UNK	02/19/09 06:27:54 pm	4.908	44730	0.75	1.00 1.0	1.00
K7EF3	UNK	02/19/09 06:30:13 pm	-0.003	9	38.34	1.00 1.0	1.00
K7EGE	UNK	02/19/09 06:32:32 pm	0.093	886	0.78	1.00 1.0	1.00
K7EGM	UNK	02/19/09 06:34:52 pm	0.008	116	1.35	1.00	1.00
K7EGQ	UNK	02/19/09 06:37:12 pm	-0.003	9	23.09	1.00 1.0	1.00
K7EG3	UNK	02/19/09 06:39:30 pm	-0.001	30	14.88	1.00 1.00	1.00
K7EHD	UNK	02/19/09 06:41:47 pm	0.803	7348	0.54	1.00 1.00	1.00
CCV % Recovery 99.44 ✓	CCV	02/19/09 06:44:07 pm	4.972 J	45315	0.75	1.00	1.00
ССВ	CCB	02/19/09 06:46:24 pm	0.000 ✓	38	11.14	1.00 1.00	1.00

090219 AA. wsz

Page 5

Туре	Date/Time	Conc (ppb)	μ Ab s	%RSD Flags	Wt. ODF	Vol.
UNK	02/19/09 06:48:42 pm	0.004 🗸	, 79	3.02	1.00	1.00
UNK	02/19/09 06:50:59 pm	4.922 \(\int \)	44856	0.42	1.00	1.00
UNK	02/19/09 06:53:17 pm	0.049 _	486	0.49	1.00 1.00	1.00
UNK	02/19/09 06:55:35 pm	0.014 ~	168	2.55	1.00 1.00	1.00
UNK	02/19/09 06:57:54 pm	4.780 🗸	43561	1.25	1.00 1.00	1.00
UNK	02/19/09 07:00:12 pm	4.189	38184	0.32	1.00 1.00	1.00
UNK	02/19/09 07:02:31 pm	0.005 🗸	, 81	4.30	1.00 1.00	1.00
UNK	02/19/09 07:04:51 pm	4.976	45352	1.24	1.00	1.00
UNK	02/19/09 07:07:10 pm	0.004	74	4.95	1.00	1.00
CCV	02/19/09 07:09:30 pm	5.097 🗸	46452	0.61	1.00 1.00	1.00
ССВ	02/19/09 07:11:47 pm	-0.001 /	33	8.51	1.00 1.00	1.00
UNK	02/19/09 07:14:07 pm	0.005	. 88	5.26	1.00 1.00	1.00
UNK	02/19/09 07:16:25 pm	5.268 🗸	48011	1.22	1.00 1.00	1.00
UNK	02/19/09 07:18:43 pm	4.851	44208	0.89	1.00 1.00	1.00
UNK	02/19/09 07:21:01 pm	-0.004 🗸	′ 3	207.49	1.00 1.00	1.00
UNK	02/19/09 07:23:19 pm	5.063	/ 46142	0.66	1.00 1.00	1.00
UNK	02/19/09 07:25:37 pm	-0.002	23	12.80	1.00 1.00	1.00
	UNK UNK UNK UNK UNK UNK UNK UNK UNK UNK	UNK 02/19/09 06:48:42 pm UNK 02/19/09 06:50:59 pm UNK 02/19/09 06:53:17 pm UNK 02/19/09 06:55:35 pm UNK 02/19/09 07:00:12 pm UNK 02/19/09 07:02:31 pm UNK 02/19/09 07:04:51 pm UNK 02/19/09 07:07:10 pm CCV 02/19/09 07:09:30 pm CCB 02/19/09 07:11:47 pm UNK 02/19/09 07:14:07 pm UNK 02/19/09 07:16:25 pm UNK 02/19/09 07:18:43 pm UNK 02/19/09 07:21:01 pm UNK 02/19/09 07:23:19 pm	UNK 02/19/09 06:48:42 pm 0.004 ✓ UNK 02/19/09 06:50:59 pm 4.922 ✓ UNK 02/19/09 06:53:17 pm 0.049 — UNK 02/19/09 06:55:35 pm 0.014 ✓ UNK 02/19/09 06:55:35 pm 0.014 ✓ UNK 02/19/09 07:00:12 pm 4.189 ✓ UNK 02/19/09 07:02:31 pm 0.005 ✓ UNK 02/19/09 07:04:51 pm 4.976 ✓ UNK 02/19/09 07:07:10 pm 0.004 ✓ CCV 02/19/09 07:09:30 pm 5.097 ✓ CCB 02/19/09 07:11:47 pm -0.001 ✓ UNK 02/19/09 07:16:25 pm 5.268 ✓ UNK 02/19/09 07:18:43 pm 4.851 ✓ UNK 02/19/09 07:21:01 pm -0.004 ✓ UNK 02/19/09 07:21:01 pm 5.063 ✓	UNK 02/19/09 06:48:42 pm 0.004 √ 79 UNK 02/19/09 06:50:59 pm 4.922 √ 44856 UNK 02/19/09 06:53:17 pm 0.049 − 486 UNK 02/19/09 06:55:35 pm 0.014 ~ 168 UNK 02/19/09 06:57:54 pm 4.780 √ 43561 UNK 02/19/09 07:00:12 pm 4.189 √ 38184 UNK 02/19/09 07:02:31 pm 0.005 √ 81 UNK 02/19/09 07:04:51 pm 4.976 √ 45352 UNK 02/19/09 07:07:10 pm 0.004 74 CCV 02/19/09 07:07:10 pm 0.001 √ 33 UNK 02/19/09 07:11:47 pm 0.001 √ 38 UNK 02/19/09 07:11:47 pm 0.005 √ 88 UNK 02/19/09 07:11:47 pm 5.268 √ 48011 UNK 02/19/09 07:18:43 pm 4.851 √ 44208 UNK 02/19/09 07:21:01 pm 0.004 √ 3 UNK 02/19/09 07:21:01 pm 0.004 √ 3	UNK 02/19/09 06:50:59 pm 4.922 4.826 0.42 UNK 02/19/09 06:53:17 pm 0.049 UNK 02/19/09 06:53:17 pm 0.049 UNK 02/19/09 06:55:35 pm 0.014 168 2.55 UNK 02/19/09 06:57:54 pm 4.780 4.189 38184 0.32 UNK 02/19/09 07:00:12 pm 4.189 38184 0.32 UNK 02/19/09 07:02:31 pm 0.005 81 4.30 UNK 02/19/09 07:04:51 pm 4.976 4.95 CCV 02/19/09 07:07:10 pm 0.004 74 4.95 CCV 02/19/09 07:09:30 pm 5.097 4.6452 0.61 CCB 02/19/09 07:11:47 pm -0.001 33 8.51 UNK 02/19/09 07:16:25 pm 5.268 48011 1.22 UNK 02/19/09 07:18:43 pm 4.851 4.851 44208 0.89 UNK 02/19/09 07:21:01 pm -0.004 3 207.49 UNK 02/19/09 07:23:19 pm 5.063 48142 0.66	UNK 02/19/09 06:48:42 pm 0.004

090219 AA. wsz

Page 6

JNPP1=9-2824/20/09

Sample Name	Туре	Date/Time	Conc µ (ppb)	Abs	%RSD Flags	Wt.	Vol.
K7D51S	UNK	02/19/09 07:27:55 pm	5.210 🗸	47482	0.67	1.00 1.00	1.00
K7D51D	UNK	02/19/09 07:30:14 pm	5.058	46093	0.75	1.00 1.00	1.00
K7D55	UNK	02/19/09 07:32:32 pm	-0.003	14	25.57	1.00 1.00	1.00
CCV	CCV	02/19/09 07:34:52 pm	5.097	46449	0.80	1 .00	1.00
ССВ	ССВ	02/19/09 07:37:09 pm	0.000	40	13.91	1.00 1.00	1.00
K7D57	UNK	02/19/09 07:39:28 pm	0.000	39	14.47	1.00 1.00	1.00
K7D59	UNK	02/19/09 07:41:48 pm	-0.002	24	15.86	1.00	1.00
K7D6F	UNK	02/19/09 07:44:07 pm	-0.001	27	3.96	1.00 1.00	1.00
K7D6H	UNK	02/19/09 07:46:27 pm	-0.002	24	7.75	1.00 1.00	1.00
K7D6L	UNK	02/19/09 07:48:45 pm	0.002	58	4.69	1.00 1.00	1.00
К7ЕРКВ	UNK	02/19/09 07:51:04 pm	-0.002 🗸	24	18.98	1.00 1.00	1.00
K7EPKC	UNK	02/19/09 07:53:22 pm	4.972 🗸	45313	0.50	1.00	1.00
K7D5W	UNK	02/19/09 07:55:40 pm	0.015	174	0.65	1.00 1.00	1.00
K7D5WS	UNK	02/19/09 07:57:58 pm	4.666	42523	0.80	1.00 1.00	1.00
CCV % Recovery 102.56	CCV	02/19/09 08:00:18 pm	5.128	46731	1.13	1.00 1.00	1.00
CCB	CCB	02/19/09 08:02:35 pm	-0.002 /	18	17.35	1.00 1.00	1.00
K7D5WD	UNK	02/19/09 08:04:54 pm	4.655	42423	0.43	1.00 1.00	1.00

090219AA.wsz

Page 7 NPDES - 2635 20 109

Sample Name	Туре	Date/Time	Conc (ppb)	μAbs	%RSD Flags	Wt. V	/ol.
K7D52	UNK	02/19/09 08:07:12 pm	0.008	108	2.06	1.00 1.00	1.00
K7D56	UNK	02/19/09 08:09:31 pm	0.011	138	1.50	1.00 1.00	1.00
CCV % Recovery 102.55	CCV	02/19/09 08:14:22 pm	5.127	46728	0.66	1.00 1.00	1.00
ССВ	ССВ	02/19/09 08:16:39 pm	0.000 /	37	5.75	1.00 1.00	1.00
K7EPPC RR 00 2120109	UNK	02/19/09 08:18:56 pm	4.626	42165	2.04	1.00 1.00	1.00
CCV % Recovery 101.94	CCV	02/19/09 08:21:16 pm	5.097 🗸	46453	0.72	1.00 1.00	1.00
ССВ	ССВ	02/19/09 08:23:33 pm	0.000 \(\)	38	10.78 .	1.00	1.00
K7D58	UNK	02/19/09 08:25:52 pm	-0.002	17	6.63	1.00 1.00	1.00
K7D6E	UNK	02/19/09 08:28:11 pm	-0.001	33	9.16	1.00 1.00	1.00
K7D6G	UNK	02/19/09 08:30:31 pm	0.001	46	7.28	1.00 1.00	1.00
K7D6K	UNK	02/19/09 08:32:51 pm	0.001	45	6.70	1.00 1.00	1.00
K7EPFB	UNK	02/19/09 08:35:09 pm	-0.002 /	/ 24	10.63	1.00 1.00	1.00
K7EPFC	UNK	02/19/09 08:37:28 pm	5.062	46132	0.91	1.00 1.00	1.00
CCV % Recovery 103.16	CCV	02/19/09 08:39:48 pm	5.158 J	47006	0.65	1.00 1.00	1.00
ССВ	ССВ	02/19/09 08:42:05 pm	-0.001	29	10.40	1.00 1.00	1.00
K7C9X	UNK	02/19/09 08:44:23 pm	-0.002	25	8.94	1.00 1.00	1.00
K7C9XS	UNK	02/19/09 08:46:42 pm	4.989	45471	0.90	1.00 1.00	1.90

090219AA.wsz

Page 8

Sample Name	Туре	Date/Time	Conc (ppb)	μ Ab s	%RSD	Flags Wt.	Vol.
K7C9XD	UNK	02/19/09 08:49:00 pm	5.027 🗸	45813	1.26	1.00	1.00
K7C90	UNK	02/19/09 08:51:19 pm	-0.003	9	59.84	1.00	1.00
K7C91	UNK	02/19/09 08:53:37 pm	0.000	41	8.43	1.00 1.00	1.00
K7C92	UNK	02/19/09 08:55:56 pm	0.000	36	3.61	1.00	1.00
K7C93	UNK	02/19/09 08:58:15 pm	-0.001	29	16.78	1.00 1.00	1.00
K7C95	UNK	02/19/09 09:00:34 pm	-0.001	30	5.00	1.00 1.00	1.00
K7DA9	UNK	02/19/09 09:02:54 pm	0.081	781	2.18	1.00 1.00	1.00
CCV % Recovery 100.71	CCV	02/19/09 09:05:14 pm	5.035	45890	0.76	1.00 1.00	1.00
ССВ	ССВ	02/19/09 09:07:31 pm	0.000 /	35	7.19	1.00	1.00
K7DQ6	UNK	02/19/09 09:09:51 pm	0.005	81	2.80	1.00 1.00	1.00
K7DRC	UNK	02/19/09 09:12:10 pm	0.242	2246	0.60	1.00 1.00	1.00
K7DRW	UNK	02/19/09 09:14:29 pm	-0.001	30	12.33	1.00 1.00	1.00
K7DRX	UNK	02/19/09 09:16:47 pm	-0.002	19	10.16	1.00	1.00
K7DR0	UNK	02/19/09 09:19:06 pm	0.000	39	8.64	1.00 1.00	1.00
К7ЕРНВ	UNK	02/19/09 09:21:25 pm	-0.003 /	11	51.66	1.00 1.00	1.00
К7ЕРНС	UNK	02/19/09 09:23:44 pm	5.070	46207	0.75	1.00 1.00	1.00
K7DCL	UNK	02/19/09 09:26:03 pm	-0.003	16	32.38	1.00	1.00

090219AA.wsz

Page 9

J MAPDES-12838 109 72

Sample Name	Туре	Date/Time	Conc (ppb)	μ Ab s	%RSD Flags	Wt. ODF	Vol.
K7DCLS	UNK	02/19/09 09:28:22 pm	4.995 /	45527	1.34	1.00 1.00	1.00
CCV / 102.25 /	CCV	02/19/09 09:30:42 pm	5.113	46594	1.70	1.00 1.00	1.00
ССВ	ССВ	02/19/09 09:32:59 pm	0.000	35	3.49	1.00	1.00
K7DCLD	UNK	02/19/09 09:35:18 pm	5.042	/ 45954	0.83	1.00	1.00
K7DCV	UNK	02/19/09 09:37:37 pm	0.006	97	4.19	1.00 1.00	1.00
K7DCW	UNK	02/19/09 09:39:56 pm	0.005	89	2.05	1.00	1.00
K7DCX	UNK	02/19/09 09:42:16 pm	0.007	101	3.18	1.00	1.00
K7DC0	UNK	02/19/09 09:44:35 pm	0.006	96	5.53	1.00 1.00	1.00
K7DC1	UNK	02/19/09 09:46:54 pm	0.006	94	4.57	1.00 1.00	1.00
K7DC5	UNK	02/19/09 09:49:13 pm	0.000	39	2.72	1.00 1.00	1.00
CCV % Recovery 102.12	CCV	02/19/09 09:51:33 pm	5.106	46532	0.90	1.00	1.00
CCB	ССВ	02/19/09 09:53:51 pm	0.000	38	6.18	1.00	1.00
K7DC9	UNK	02/19/09 09:56:10 pm	0.013	155	1.19	1.00	1.00
K7DDD	UNK	02/19/09 09:58:29 pm	0.006	93	2.63	1.00	1.00
K7DDG	UNK	02/19/09 10:00:48 pm	0.003	70	4.21	1.00 1.00	1.00
K7DDL	UNK	02/19/09 10:03:07 pm	0.002	58	4.97	1.00	1.00
K7DDQ	UNK	02/19/09 10:05:26 pm	0.003	63	2.08	1 .00	1.00

090219 AA. wsz

Page 10

Sample Name	Туре	Date/Time	Conc (ppb)	μAbs	%RSD F	Flags Wt. \ ODF	/ol.
K7DLC	UNK	02/19/09 10:07:45 pm	0.006	90	5.92	1.00 1.00	1.00
K7DLK	UNK	02/19/09 10:10:04 pm	0.003	67	3.64	1.00 1.00	1.00
K7DLM	UNK	02/19/09 10:12:24 pm	0.005	86	1.69	1.00	1.00
K7DLR	UNK	02/19/09 10:14:44 pm	0.003	65	3.33	1.00	1.00
CCV % Recovery 102.26	CCV	02/19/09 10:17:03 pm	5.113 ~	46599	0.95	1.00	1.00
ССВ	ССВ	02/19/09 10:19:20 pm	-0.002	/ ₂₄	15.52	1.00 1.00	1.00

Analysis Parameters

Instrument

Conditions

Gas flow (mL/min)	Sample Uptake (s)	Rinse (s)	Read delay (s)	Replicates (#)	Replicate time (s)	Pump speed (%)	Wavelength (nm)
100	40.00	90.00	50.00	4	1.50	50	253.65

Instrumental Zero

Zero before first sample:

Zero periodically:

Before each calibration.

Baseline Correction

#1 Start time (s)	#1 End time (s)	#2 Start time (s)	#2 End time (s)
25.00	29.00		

Standby Mode

Enabled: Yes

Standby Options: pump slow

Autodilution

Enabled: Yes

Condition: Saturate Tube # range: 4:1 - 4:60

If no autodilution tubes remaining continue undiluted

Calibration

Settings

Algorithm	Through blank	Weighted fit	Cal. Type	Racalibration rate	Reslope rate	Reslope standard
Linear	No	No	Normal	0	0	N/A

Limits

Calibration	n slope	Res	lope	Coeff. of	
Lower (%)	Upper (%)	Lower (%)	Upper (%)	Determination	
20	150	75	125	0.99500	

Error action: Flag and continue

QC

GLP Override: Yes

QC Tests

2/20/2009 6:29:52 AM

090219AA.wsz

Page 12

JNPDES - 2840 201095

CCB

Concentration

(ppb)

0.2000

Failure flag: Q

Error action for manually inserted QC: Stop analysis

ICB

Concentration

(ppb)

0.2000

Failure flag: Z

Error action for manually inserted QC: Stop analysis

CCV

Concentration

Low Limit

High Limit

(ppb)

%

%

5.0000

80.0000

120.0000

Failure flag: Q

Error action for manually inserted QC: Stop analysis

ICV

Concentration

Low Limit

High Limit

(ppb)

%

%

7.0000

90.0000

110.0000

Failure flag: Q

Error action for manually inserted QC: Stop analysis

CRDL

Concentration

Low Limit

High Limit

(ppb)

%

0.2000

70.0000

130.0000

Failure flag: Y

Error action for manually inserted QC: Stop analysis

TestAmerica Laboratories, Inc.

ANALYTICAL REPORT

MWH-Pasadena / Boeing

Lot D9C050247

Project ISB1082

Joseph Doak 17461 Derian Avenue Suite 100 Irvine, CA 92614

TestAmerica Laboratories, Inc.

Project Manager

March 11, 2009

Quality Control Definitions of Qualifiers

Qualifier	Definition
U	Result is less than the method detection limit (MDL).
В	Organics: Method blank contamination. The associated method blank contains the target analyte at a reportable level. Inorganics: Estimated result. Result is less than the RL
J	Organics: Estimated result. Result is less than RL Inorganics: Method blank contamination. The associated method blank contains the target analyte at a reportable level.
E	Estimated result. Result concentrations exceed the calibration range.
p	Relative Percent Difference (RPD) is outside control limits.
*	Surrogate or Relative Percent Difference (RPD) is outside control limits.
DIL	The concentration is estimated or not reported due to dilution.
COL	More than 40% difference between the primary and confirmation detector results. The lower of the two results is reported.
CHI	More than 40% difference between the primary and confirmation detector results. The higher of the two results is reported.
L	Serial dilution of a digestate in the analytical batch indicates that physical and chemical interferences are present.
a	Spiked analyte recovery is outside stated control limits.
N	Spiked analyte recovery is outside stated control limits.
NC NC	The recovery and/or RPD were not calculated.
MSB	The recovery and/or RPD were not calculated because the sample amount was greater than four times the spike amount.

Case Narrative

Enclosed is the report for two samples received at TestAmerica Laboratories, Inc. – Denver laboratory on February 24, 2009. The results included in this report relate only to the samples in this report and have been reviewed for compliance with the laboratory QA/QC plan and meet all requirements of NELAC. All data have been found to be compliant with laboratory protocol, with the exception of any items noted below.

This report may include reporting limits (RLs) less than the Denver laboratory's standard reporting limits. The reported sample results and associated reporting limits are being used specifically to meet the needs of this project. Note that data are not normally reported to these levels without qualification because they are inherently less reliable and potentially less defensible than required by the latest industry standards.

Dilution factors and footnotes have been provided to assist in the interpretation of the results. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at concentrations above the linear calibration curve, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

TestAmerica Laboratories, Inc. utilizes USEPA approved methods in all analytical work. The samples presented in this report were analyzed for the parameters listed on the analytical methods summary page in accordance with the methods indicated. A summary of quality control parameters is provided below.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Quality Control Summary for Lot D9C050247

Sample Receiving

The cooler temperature upon receipt at the laboratory was acceptable at 5.1°C.

Sample ISB1802-01, requesting alpha-BHC by Method 608, was received at the TestAmerica Denver laboratory after the recommended sample holding time had expired. The client was notified on March 9, 2009.

Alpha-BHC - Method 608

Sample ISB1802-01, requesting alpha-BHC by Method 608, was received at the TestAmerica Denver laboratory after the recommended sample holding time had expired. Please note that the sample result should be considered estimated. The sample has been flagged with "HTV" as appropriate.

The sample ISB1802-01 was observed to have heavy emulsions with methylene chloride during the Method 608 extraction process.

The method required MS/MSD analyses were not performed for QC batch 9064381, due to insufficient sample volume. Method precision and accuracy were verified by the acceptable LCS/LCSD analysis data.

No anomalies were observed.

EXECUTIVE SUMMARY - Detection Highlights

D9C050247

PARAMETER RESULT LIMIT UNITS METHOD METHOD

NO DETECTABLE PARAMETERS

METHODS SUMMARY

D9C050247

PARAMETER

ANALYTICAL PREPARATION METHOD

Organochlorine Pesticides and PCBs

CFR136A 608

CFR136A 608

References:

CFR136A

"Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

METHOD / ANALYST SUMMARY

D9C050247

ANALYTICA METHOD	L	ANALYST	ANALYST ID
CFR136A 6	08	Dennis Jonsrud	009226
Reference	s:		
CFR136A	Industrial Wastewate	Chemical Analysis of Municipal and r", 40CFR, Part 136, Appendix A, subsequent revisions.	

SAMPLE SUMMARY

D9C050247

WO #	SAMPLE#	CLIENT SAMPLE ID	DATE DATE	SAMP TIME
K74JL	001	ISB1802-01	02/16/09	14:30
370mm / 6	>			

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

QC DATA ASSOCIATION SUMMARY

D9C050247

Sample Preparation and Analysis Control Numbers

SAMPLE#	MATRIX	ANALYTICAL METHOD	LEACH BATCH #	PREP BATCH #	MS RUN#
001	WATER	CFR136A 608		9064381	

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Semivolatile GC

CLP-Like Forms

Lot ID:	D9C050247	
Client:	TestAmerica-Irvin	e
Method:	608	
Associated	Sample:001	
Batch:	9064381	

Lab Name:

TESTAMERICA DENVER

Client Sample ID:

ISB1802-01

Lot/SDG Number:

D9C050247

Lab Sample ID:

D9C050247-001

Matrix:

WATER

Lab WorkOrder:

K74JL1AA

% Moisture:

<u>N/A</u>

02/16/09 14:30

Basis:

Wet

Date/Time Collected: Date/Time Received:

03/05/09 09:15

Analysis Method:

<u>608</u>

Date Leached:

03/05/09 16:00

Unit: QC Batch ID: ug/L 9064381 Date/Time Extracted: Date/Time Analyzed:

03/10/09 16:41

Sample Aliquot:

1056 mL

Instrument ID:

<u>P2</u>

Dilution Factor:

CAS No.	Analyte	Conc.	MDL	RL	Q
319-84-6	alpha-BHC	0.050	0.0053	0.050	U HTV

CAS No.	Surrogate	% Rec	Lower Limit	Upper Limit	Q
2051-24-3	Decachlorobiphenyl	59	32	144	
877-09-8	Tetrachloro-m-xylene	88	52	117	

Lab Name:

TESTAMERICA DENVER

Client Sample ID: Lab Sample ID:

D9C050000-381B

Lot/SDG Number: Matrix:

D9C050247 **WATER**

Lab WorkOrder:

% Moisture:

Date/Time Collected:

K74R21AA

Basis:

Wet

Date/Time Received:

Analysis Method:

<u>608</u>

Date Leached:

03/05/09 16:00

Unit: QC Batch ID: ug/L 9064381 Date/Time Extracted: Date/Time Analyzed:

03/10/09 17:31

Sample Aliquot:

1000 mL

Instrument ID:

<u>P2</u>

Dilution Factor:

CAS No.	Analyte	Conc.	MDL	RL	Q
319-84-6	alpha-BHC	0.050	0.0053	0.050	U

CAS No.	Surrogate	% Rec	Lower Limit	Upper Limit	Q
2051-24-3	Decachlorobiphenyl	97	32	144	
877-09-8	Tetrachloro-m-xylene	65	52	117	

TestAmerica Irvine

Surrogate Recovery Summary

Lab Name:

TESTAMERICA DENVER

Extraction

109DM01

Lot/SDG Number:

D9C050247

QC Batch ID:

Client ID	Work Order	SRG1	SRG2	SRG3	SRG4	SRG5	SRG6	SRG7	SRG8	TOT OUT
CHECK SAMPLE	K74R21AC	100	55							0
DUPLICATE CHECK	K74R21AD	102	80							0

Surrogate Number	Surrogate Name	Lower Control Limit	Upper Control Limit
SRG 1	Decachlorobiphenyl	68	122
SRG 2	Tetrachloro-m-xylene	54	115

TestAmerica Irvine

Surrogate Recovery Summary

Lab Name:

TESTAMERICA DENVER

Extraction

109DM01

Lot/SDG Number:

D9C050247

QC Batch ID:

Client ID	Work Order	SRG1	SRG2	SRG3	SRG4	SRG5	SRG6	SRG7	SRG8	тот оит
ISB1802-01	K74JL1AA	59	88							0
INTRA-LAB BLANK	K74R21AA	97	65							0

Surrogate Number	Surrogate Name	Lower Control Limit	Upper Control Limit
SRG 1	Decachlorobiphenyl	32	144
SRG 2	Tetrachloro-m-xylene	52	117

Lab Name:

TESTAMERICA DENVER

Client Sample ID:

D9C050000-381C

Lot/SDG Number:

D9C050247

Lab Sample ID:

Matrix:

WATER

Lab WorkOrder:

K74R21AC

% Moisture:

N/A

Date/Time Collected:

Basis:

<u>Wet</u>

Date/Time Received:

Analysis Method:

<u>608</u>

Date Leached:

03/05/09 16:00

Unit: QC Batch ID: ug/L

Date/Time Extracted:

03/10/09 15:02

9064381

Date/Time Analyzed:

Sample Aliquot:

1

1000 mL

Instrument ID:

<u>P2</u>

Dilution Factor:

Analyte	True	Found	%Rec	Q	Limits
alpha-BHC	0.500	0.479	96		66 - 115

CAS No.	Surrogate	% Rec	Lower Limit	Upper Limit	Q
2051-24-3	Decachlorobiphenyl	100	68	122	
877-09-8	Tetrachloro-m-xylene .	55	54	115	

Lab Name:

TESTAMERICA DENVER

D9C050247

Client Sample ID: Lab Sample ID:

D9C050000-381L

Lot/SDG Number:

WARER

Lab WorkOrder:

))C030000 50

Matrix:

WATER N/A

Lab WorkOrder

K74R21AD

% Moisture:
Basis:

Wet

Date/Time Collected:

Date/Time Received:

Analysis Method:

<u>608</u>

Date Leached:

03/05/09 16:00

Unit: QC Batch ID: ug/L

Date/Time Extracted: Date/Time Analyzed:

03/10/09 15:19

Sample Aliquot:

9064381 1000 mL

Instrument ID:

<u>P2</u>

Dilution Factor:

	-		C	a/ P		D.D.D.		QC Lin	nits
Analyte	True	Found	C	% Rec	Q	RPD	Q	% Rec	RPD
alpha-BHC	0.500	0.514		103		6.9		66 - 115	50

CAS No.	Surrogate	% Rec	Lower Limit	Upper Limit	Q
2051-24-3	Decachlorobiphenyl	102	68	122	
877-09-8	Tetrachloro-m-xylene	80	54	115	

TestAmerica Irvine

Method Blank Summary

Lab Name:

TESTAMERICA DENVER

Lot/SDG Number:

D9C050247

Matrix:

WATER

Analysis Method:

<u>WATER</u> <u>608</u>

Extraction Method:

<u>109DM01</u>

QC Batch ID:

9064381

Lab File ID:

:

024F2401.

Lab Sample ID:

D9C050000-381B

Lab Work Order:

<u>K74R21AA</u>

Date/Time Extracted:
Date/Time Analyzed:

03/05/09 16:00 03/10/09 17:31

Instrument ID:

<u>P2</u>

Client ID	Sample Work Order #	Lab File ID	Date Analyzed	Time Analyzed
ISB1802-01	K,74JL1AA	024F2401.	03/10/09	16:41
CHECK SAMPLE	K74R21AC C	018F1801.	03/10/09	15:02
DUPLICATE CHECK	K74R21AD L	019F1901.	03/10/09	15:19

TestAmerica

INITIAL CALIBRATION DATA

Start Cal Date End Cal Date Quant Method Target Version 01-MAR-2009 01-MAR-2009 ESTD 4.14
Falcon
\\DenSvr03\Public\chem\GCS\GC_
02-Mar-2009 07:44 GC_P2.i 16:37 21:01

Integrator Method file Last Edit P2.i\0301091.b\P2_8081_1.m

Calibration Level Level Level Level Level Level

SEE CALIBRATION HISTORY

11 Aldrin	10 Heptachlor	(5)	(4)	(3)	(2)	9 Technical Chlordane(1)	8 delta-BHC	7 beta-BHC	6 gamma-BHC (Lindane)	5 alpha-BHC	4 Diallate	3 Hexachlorobenzene	1 Trichlorophenol		Compound	
32264	32819	++++	++++	+++++	++++	+ + + + + + + + + + + + + + + + + + + +	32342	64946	34186	38459	452507	134212	† † † †		Level 1	4.0000
31523	31807	† + + +	+++++	+++++	++++	++++	32379	153688	33968	38449	845506	315320	+++++		Level 2	10.0000
30597	30648	++++	++++	++++	++++	++++	32216	361787	33253	38020	1940628	749989	+++++		Level 3	25.0000
30799	30887	45998	163060	189044	58110	62955	33576	739364	34123	39276	2669939	1505326	++++		Level 4	50.0000
30099	30142	+ + + +	+++++	++++	++++	++++	33776	1091642	33802	39235	3729395	2221704	++++		Level 5	75.0000
29915 AVRG	29637 AVRG	+++++ LINR	+++++ LINR	+++++ LINR	+++++ LINR	+++++ LINR	34028 AVRG	1450446 WLINR	33855 AVRG	39397 AVRG	7240854 WLINR	2926219 WLINR	+++++ LINR		Level 6 Curve	100.0000
	-	LINR [0.000e+000]	LINR 0.000e+000	LINR [0.000e+000]	LINR 0.000e+000	LINR 0.000e+000	-	R -0.49998			R -125	-0.5	LINE 0.000e+000 0.000e+000	*****	. <u>е</u>	- c
30866	30990	920	3261	3781	1162	1259	33053	14467	33864	38806	732	29460	0.000e+000		m1	Coefficients
														11 11 11 11 11 11	m2	
2.88235	3.73206	1.00000	1.000001	1.00000	1.000001	1.000001	2.49793	0.99980	0.98721	1.46700	0.99939	1 0.99961	0 000e+000 <		or R Z	*RSD